Startseite Tunable properties of the defect mode of a ternary photonic crystal with a high TC superconductor and semiconductor layers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tunable properties of the defect mode of a ternary photonic crystal with a high TC superconductor and semiconductor layers

  • Abdulkarem H. M. Almawgani , Dana N. Alhamss , Sofyan A. Taya ORCID logo EMAIL logo , Khedr M. Abohassan , Adam R. H. Alhawari , Ilhami Colak und Shobhit K. Patel
Veröffentlicht/Copyright: 23. September 2022

Abstract

The tuning of a defect mode in a photonic crystal (PC) is of high significance for filter and sensor applications. We here investigate the tuning of the defect mode of a defective ternary PC with a semiconductor and high critical-temperature superconductor layers. A ternary photonic crystal with the heterostructure (semiconductor/superconductor/dielectric) is assumed. The transfer matrix method is employed to investigate the transmission of transverse electric waves. The refractive indices of the semiconductor and superconductor layers can be tuned by changing the operating temperature and the hydrostatic pressure. The defect mode and transmission properties can be controlled by using the hydrostatic pressure, operating temperature, frequency and thicknesses of the heterostructure layers. The analysis is performed in the frequency range of 20–65 THz. The proposed structure can be utilized as a biosensor and a narrowband transmission peaks filter.


Corresponding author: Sofyan A. Taya, Physics Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine, E-mail:

Funding source: Najran University

Award Identifier / Grant number: NU/RG/SERC/11/16

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/11/16).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, p. 2059, 1987. https://doi.org/10.1103/physrevlett.58.2059.Suche in Google Scholar PubMed

[2] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, p. 2486, 1987. https://doi.org/10.1103/physrevlett.58.2486.Suche in Google Scholar PubMed

[3] O. Soltani, S. Francoeur, Z. Baraket, and M. Kanzari, “Tunable polychromatic filters based on semiconductor-superconductor-dielectric periodic and quasi-periodic hybrid photonic crystal,” Opt. Mater., vol. 111, p. 110690, 2021. https://doi.org/10.1016/j.optmat.2020.110690.Suche in Google Scholar

[4] M. G. Daher, S. A. Taya, I. Colak, S. K. Patel, M. M. Olaimat, and O. Ramahi, “Surface plasmon resonance biosensor based on graphene layer for the detection of waterborne bacteria,” J. Biophot., vol. 15, p. e202200001, 2022. https://doi.org/10.1002/jbio.202200001.Suche in Google Scholar PubMed

[5] A. H. Aly, A. Aghajamali, H. A. Elsayed, and M. Mobarak, “Analysis of cutoff frequency in a one-dimensional superconductor-metamaterial photonic crystal,” Phys. C: Supercond. Appl., vol. 528, p. 5, 2016. https://doi.org/10.1016/j.physc.2016.05.025.Suche in Google Scholar

[6] A. H. Aly, D. Mohamed, H. A. Elsayed, and D. Vigneswaran, “Optical properties of new type of superconductor-semiconductor metamaterial photonic crystals,” J. Supercond. Nov. Magnetism, vol. 31, p. 3453, 2018. https://doi.org/10.1007/s10948-018-4628-5.Suche in Google Scholar

[7] S. A. Taya, M. A. Abutailkh, I. Colak, and O. M. Ramahi, “Modelling of three tunable multichannel filters using Ag metal as a defect layer in a photonic crystal,” Opt. Quant. Electron., vol. 53, p. 644, 2021. https://doi.org/10.1007/s11082-021-03307-x.Suche in Google Scholar

[8] O. Soltani, J. Zaghdoudi, and M. Kanzari, “High quality factor polychromatic filters based on hybrid photonic structures,” Chin. J. Phys., vol. 56, p. 2479, 2018. https://doi.org/10.1016/j.cjph.2018.05.025.Suche in Google Scholar

[9] R. G. Bikbaev, S. Ya. Vetrov, and I. V. Timofeev, “Hyperbolic metamaterial for the Tamm plasmon polariton application,” J. Opt. Soc. Am. B, vol. 37, pp. 2215–2220, 2020. https://doi.org/10.1364/josab.394935.Suche in Google Scholar

[10] F. Wu, X. Wu, S. Xiao, G. Liu, and H. Li, “Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state,” Opt. Express, vol. 29, pp. 23976–23987, 2021. https://doi.org/10.1364/oe.434181.Suche in Google Scholar

[11] Z. Saleki, Y. Fang, and S. R. Entezar, “Broadband terahertz polarizing beam splitter based on a graphene-based defective one-dimensional photonic crystal,” IEEE Photon. J., vol. 11, no. 5, pp. 1–13, 2019. https://doi.org/10.1109/JPHOT.2019.2935084.Suche in Google Scholar

[12] F. Wu, S. Xiao, D. Liu, Z. Chen, G. Chen, and X. Peng, “Complete redshift photonic bandgap and dual-wavelength polarization selection in periodic multilayer structure containing hyperbolic metamaterial,” Opt. Commun., vol. 495, p. 127117, 2021.10.1016/j.optcom.2021.127117Suche in Google Scholar

[13] F. Wu, M. Chen, and S. Xiao, “Wide-angle polarization selectivity based on anomalous defect mode in photonic crystal containing hyperbolic metamaterials,” Opt. Lett., vol. 47, pp. 2153–2156, 2022. https://doi.org/10.1364/ol.455910.Suche in Google Scholar

[14] N. Doghmosh, S. A. Taya, A. Upadhyay, M. M. Olaimat, and I. Colak, “Enhancement of optical visible wavelength region selective reflector for photovoltaic cell applications using a ternary photonic crystal,” Optik, vol. 243, p. 167491, 2021. https://doi.org/10.1016/j.ijleo.2021.167491.Suche in Google Scholar

[15] Y. Trabelsi, N. B. Ali, W. Belhadj, and M. Kanzari, “Photonic band gap properties of one-dimensional generalized Fibonacci photonic quasicrystal containing superconductor material,” J. Supercond. Nov. Magnetism, vol. 32, p. 3541, 2019. https://doi.org/10.1007/s10948-019-5099-z.Suche in Google Scholar

[16] H. F. Zhang, Y. Ma, W. Y. Li, and T. Liu, “Investigation of unidirectional ultra-wideband absorption in the one-dimensional plasma photonic crystals with Thue-Morse sequence,” Phys. Plasmas, vol. 26, p. 12112, 2019. https://doi.org/10.1063/1.5083106.Suche in Google Scholar

[17] T. C. King, “One-way absorption properties in asymmetric single-negative-based Cantor photonic crystals,” Chin. J. Phys., vol. 64, p. 18, 2020. https://doi.org/10.1016/j.cjph.2019.10.021.Suche in Google Scholar

[18] S. Sahel, R. Amri, L. Bouaziz, et al.., “Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2,” Superlattice. Microst., vol. 97, p. 429, 2016. https://doi.org/10.1016/j.spmi.2016.07.007.Suche in Google Scholar

[19] S. A. Taya, O. M. Ramahi, M. A. Abutailkh, et al.., “Investigation of bandgap properties in one-dimensional binary superconductor–dielectric photonic crystal: TE case,” Indian J. Phys., vol. 96, p. 2151, 2022. https://doi.org/10.1007/s12648-021-02151-9.Suche in Google Scholar

[20] S. A. Taya, N. Doghmosh, M. A. Abutailkh, A. Upadhyay, Z. M. Nassar, and I. Colak, “Properties of band gap for p-polarized wave propagating in a binary superconductor-dielectric photonic crystal,” Optik, vol. 243, p. 167505, 2021. https://doi.org/10.1016/j.ijleo.2021.167505.Suche in Google Scholar

[21] Q. Xue, X. Wang, C. Liu, and Y. Liu, “Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor,” Plasma Sci. Technol., vol. 20, p. 35504, 2018. https://doi.org/10.1088/2058-6272/aa98d8.Suche in Google Scholar

[22] S. K. Srivastava and A. Aghajamali, “Investigation of reflectance properties in 1D ternary annular photonic crystal containing semiconductor and high-Tc superconductor,” J. Supercond. Nov. Magnetism, vol. 29, p. 1423, 2016. https://doi.org/10.1007/s10948-016-3413-6.Suche in Google Scholar

[23] A. Y. Herrera, J. M. Calero, and N. Porras, “Pressure, temperature, and thickness dependence of transmittance in a 1D superconductor-semiconductor photonic crystal,” J. Appl. Phys., vol. 123, p. 33101, 2018. https://doi.org/10.1063/1.5009708.Suche in Google Scholar

[24] F. Segovia-Chaves and H. Vinck-Posada, “Effects of temperature, pressure and thickness on a one-dimensional Thue-Morse photonic crystal,” Optik, vol. 203, p. 163887, 2020. https://doi.org/10.1016/j.ijleo.2019.163887.Suche in Google Scholar

[25] F. Segovia-Chaves and H. Vinck-Posada, “Dependence of the defect mode with temperature, pressure and angle of incidence in a 1D semiconductor-superconductor photonic crystal,” Phys. C: Supercond. Appl., vol. 553, p. 1, 2018. https://doi.org/10.1016/j.physc.2018.07.001.Suche in Google Scholar

[26] N. B. Ali, “Narrow stop band microwave filters by using hybrid generalized quasi-periodic photonic crystals,” Chin. J. Phys., vol. 55, p. 2384, 2017.10.1016/j.cjph.2017.10.008Suche in Google Scholar

[27] J. Zaghdoudi, Z. Baraket, and M. Kanzari, “A tunable optimized low-temperature sensor based on the hybrid photonic crystals (F4/Bg5/F4) and (Bg5/F4/Bg5),” J. Supercond. Nov. Magnetism, vol. 32, p. 2605, 2019. https://doi.org/10.1007/s10948-019-4995-6.Suche in Google Scholar

[28] F. Segovia-Chaves, H. Vinck-Posada, V. Dhasarathan, and M. S. Mani Rajan, “Transmittance spectrum in a 1D photonic crystal composed fused silica and sea water,” Optik, vol. 185, pp. 930–935, 2019. https://doi.org/10.1016/j.ijleo.2019.03.110.Suche in Google Scholar

[29] V. Revathy, C. S. Boopathi, K. Selvakumar, et al.., “Nonlinear polarization in metal nanocomposite system based photonic crystals,” Optik, vol. 176, pp. 78–84, 2019. https://doi.org/10.1016/j.ijleo.2018.09.038.Suche in Google Scholar

[30] I. Bhattacharyya, S. Ray, and A. Pradhan, “Tidal effect in ADM formulation under the foliations of spacetime,” Chin. J. Phys., vol. 77, pp. 1765–1769, 2022. https://doi.org/10.1016/j.cjph.2022.02.006.Suche in Google Scholar

[31] S. K. Srivastava and A. Aghajamali, “Narrow transmission mode in one-dimensional symmetric defective photonic crystal containing metamaterial and high Tc superconductor,” Opt. Appl., vol. 49, no. 1, pp. 37–50, 2019.Suche in Google Scholar

[32] S. K. Srivastava, “Study of defect modes in 1d photonic crystal structure containing high and low Tc superconductor as a defect layer,” J. Supercond. Nov. Magnetism, vol. 27, pp. 101–114, 2014. https://doi.org/10.1007/s10948-013-2274-5.Suche in Google Scholar

[33] N. M. D’souza and V. Mathew, “Superconductor based ternary periodic multilayered structure as a single and multichanneled filter in the terahertz region,” Appl. Opt., vol. 56, pp. 6765–6769, 2017.10.1364/AO.56.006765Suche in Google Scholar PubMed

[34] A. H. Aly and D. Mohamed, “The optical properties of metamaterial-superconductor photonic band gap with/without defect layer,” J. Supercond. Nov. Magnetism, vol. 32, pp. 1897–1902, 2019. https://doi.org/10.1007/s10948-018-4922-2.Suche in Google Scholar

[35] Y.-b. Chen, C. Zhang, Y.-y. Zhu, S.-n. Zhu, and N.-b. Ming, “Tunable photonic crystals with superconductor constituents,” Mater. Lett., vol. 55, nos. 1–2, pp. 12–16, 2002. https://doi.org/10.1016/s0167-577x(01)00610-3.Suche in Google Scholar

[36] W.-H. Lin, C.-J. Wu, T.-J. Yang, and S.-J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal,” Opt. Express, vol. 18, pp. 27155–27166, 2010. https://doi.org/10.1364/oe.18.027155.Suche in Google Scholar

[37] C. Panagopoulos, J. R. Cooper, G. B. Peacock, et al.., “Anisotropic magnetic penetration depth of grainaligned HgBa2Ca2Cu3O8+δ,” Phys. Rev. B, vol. 53, pp. R2999–R3002, 1996. https://doi.org/10.1103/physrevb.53.r2999.Suche in Google Scholar PubMed

[38] I. Erdogan, O. Akankan, and H. Akbas, “Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electricfield polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with adonor impurity,” Superlattice. Microst., vol. 59, pp. 13–20, 2013. https://doi.org/10.1016/j.spmi.2013.03.020.Suche in Google Scholar

Received: 2022-08-19
Revised: 2022-09-01
Accepted: 2022-09-07
Published Online: 2022-09-23
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2022-0212/html
Button zum nach oben scrollen