Home Accurate theoretical calculation of relativistic atomic data of Zn-like, Ga-like and Ge-like Re ions
Article
Licensed
Unlicensed Requires Authentication

Accurate theoretical calculation of relativistic atomic data of Zn-like, Ga-like and Ge-like Re ions

  • Miao Wu , Yong Wu EMAIL logo and Zhencen He
Published/Copyright: November 2, 2022

Abstract

The present work reports results of spectral parameters of Zn-like, Ga-like, and Ge-like Re ions using the multiconfiguration Dirac–Hartree–Fock method. Energy levels, transition probabilities, weighted oscillator strengths, line strengths, and wavelengths are given for Zn-like, Ga-like, and Ge-like Re ions. Breit interactions and quantum electrodynamics corrections are taken into consider. Comparisons are performed between the calculated energy levels and wavelengths with other available values, which show that the calculated results are in good agreement with each other for Zn-like Re ions. And the spectral parameters of Ga-like Re and Ge-like Re are also calculated which are new and unpublished previously.


Corresponding author: Yong Wu, Department of General Education, Anhui Xinhua University, Hefei, Anhui, 230088, China, E-mail:

Funding source: The Key Natural Science Foundation of Anhui Higher Education Institutions of China

Award Identifier / Grant number: KJ2020A0781

Award Identifier / Grant number: KJ2019A0879

Award Identifier / Grant number: KJ2021A1171

Funding source: The Key Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Award Identifier / Grant number: 20KJA430005

Funding source: Industry-university-research Project

Award Identifier / Grant number: 2021cxy036

Acknowledgments

The authors express sincere gratitude to P. Jönsson for providing the GRASP2K package for free.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the Key Natural Science Foundation of Anhui Higher Education Institutions of China (Grant No. KJ2020A0781, KJ2019A0879, KJ2021A1171), and the Key Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJA430005), Industry-university-research Project: 2021cxy036.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. Li, E. Träbert, and C. Dong, “Energy levels, transition rates and lifetimes for low-lying levels in Cu-, Zn-, Ga- and Ge-like ions of iodine,” Phys. Scripta, vol. 83, no. 1, pp. 981–996, 2011.10.1088/0031-8949/83/01/015301Search in Google Scholar

[2] J. Zeng, Z. Gang, and J. Yuan, “Electron impact collision strengths and oscillator strengths for Ge-Ga-Zn-Cu-Ni-and Co-like Au ions,” Atomic Data Nucl. Data Tables, vol. 93, no. 2, pp. 199–273, 2007. https://doi.org/10.1016/j.adt.2006.10.002.Search in Google Scholar

[3] P. Quinet, E. Biéemont, P. Palmeri, et al.., “Relativistic atomic data for EUV and X-ray spectra of highly charged Cu-Zn-Ga- and Ge-like ions (70 ≤ Z ≤ 92),” J. Phys. Conf., vol. 58, pp. 153–156, 2007. https://doi.org/10.1088/1742-6596/58/1/029.Search in Google Scholar

[4] M. Xu, G. Jiang, B. Deng, et al.., “Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-Ni-Cu-Zn-Ga-Ge-and Se-like Au ions,” Atomic Data Nucl. Data Tables, vol. 100, no. 6, pp. 1357–1398, 2014. https://doi.org/10.1016/j.adt.2014.05.002.Search in Google Scholar

[5] H. Feng, J. Yang, C. Wang, et al.., “Multiconfiguration Dirac-Fock calculations on multi-valence-electron systems: Benchmarks on Ga-like ions,” Phys. Rev. A, vol. 84, no. 4, pp. 1460–1462, 2011.Search in Google Scholar

[6] G. Bian, F. He, G. Jiang, et al.., “Influence of electron correlation on transition energy of gold ions,” Phys. Scripta, vol. 90, no. 1, p. 015403, 2014. https://doi.org/10.1088/0031-8949/90/1/015403.Search in Google Scholar

[7] L. H. Hao, X. P. Kang, and J. J. Liu, “Energies and spectral lines for the states of 4s 24p 2, 4s4p 3, and 4s 24p4d configurations in Ge-like Te, Xe, and Ba ions,” J. Appl. Spectrosc., vol. 84, no. 2, pp. 351–360, 2017. https://doi.org/10.1007/s10812-017-0476-5.Search in Google Scholar

[8] L. H. Hao, X. P. Kang, and J. J. Liu, “Energy levels, wavelengths, and transition probabilities of intercombination lines in the spectra of Gе-like I, Cs, and La ions,” J. Appl. Spectrosc., vol. 86, no. 2, pp. 333–344, 2019. https://doi.org/10.1007/s10812-019-00823-3.Search in Google Scholar

[9] M. Wu, Z. He, and F. Hu, “Energy levels, wavelengths, probabilities, and oscillator strengths of transition for Ge-like Pd, Ag, and Cd ions,” J. Appl. Spectrosc., vol. 87, no. 6, pp. 1148–1156, 2021. https://doi.org/10.1007/s10812-021-01123-5.Search in Google Scholar

[10] M. Wu and Z. He, “Energy levels and spectral lines for Ge-like Zr, Nb and Tc ions,” Can. J. Phys., vol. 99, no. 5, pp. 317–322, 2020. https://doi.org/10.1139/cjp-2020-0183.Search in Google Scholar

[11] P. Quinet, É. Biémont, P. Palmeri, et al.., “Relativistic atomic data for EUV and X-ray lines in the highly charged Zn-like ions from Yb40+ to U62+,” Atomic Data Nucl. Data Tables, vol. 93, no. 5, pp. 711–729, 2007. https://doi.org/10.1016/j.adt.2007.05.001.Search in Google Scholar

[12] C. M. Brown, J. F. Seely, D. R. Kania, et al.., “Wavelengths and energy levels for the Zn I isoelectronic sequence Sn20+ through U62+,” Atomic Data Nucl. Data Tables, vol. 58, no. 2, p. 203, 1994. https://doi.org/10.1006/adnd.1994.1027.Search in Google Scholar

[13] E. Träbert, J. A. Santana, P. Quinet, et al.., “Intercombination Transitions in the n = 4 Shell of Zn-, Ga-, and Ge-Like Ions of Elements Kr through Xe,” Atoms, vol. 6, no. 3, p. 40, 2018. https://doi.org/10.3390/atoms6030040.Search in Google Scholar

[14] J. F. Seely, C. M. Brown, and W. E. Behring, “Transitions in Fe-, Co-, Cu-, and Zn-like ions of W and Re,” J. Opt. Soc. Am. B, vol. 6, no. 1, pp. 3–6, 1989. https://doi.org/10.1364/josab.6.000003.Search in Google Scholar

[15] E. Träbert, P. H. Heckmann, J. Doerfert, et al.., “Beam-foil lifetimes measured for intercombination transitions in Zn-like ions of Rh and Ag and Ga-like ions of Rh,” Phys. Scripta, vol. 47, no. 6, p. 780, 1993. https://doi.org/10.1088/0031-8949/47/6/015.Search in Google Scholar

[16] I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, New York, Springer Science & Business Media, 2007.10.1007/978-0-387-35069-1Search in Google Scholar

[17] P. Jönsson, G. Gaigalas, J. Bieroń, et al.., “Grasp2K relativistic atomic structure package,” Comput. Phys. Commun., vol. 184, no. 9, pp. 2197–2203, 2013. https://doi.org/10.1016/j.cpc.2013.02.016.Search in Google Scholar

[18] P. Jönsson, X. He, C. F. Fischer, and I. P. Grant, “New version: Grasp2K relativistic atomic structure package – ScienceDirect,” Comput. Phys. Commun., vol. 177, p. 597, 2007.10.1016/j.cpc.2013.02.016Search in Google Scholar

[19] C. F. Fischer, G. Tachiev, G. Gaigalas, and M. R. Godefroid, “An MCHF atomic-structure package for large-scale calculations,” Comput. Phys. Commun., vol. 176, p. 559, 2007.10.1016/j.cpc.2007.01.006Search in Google Scholar

[20] C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, “Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions,” J. Phys. B Atom. Mol. Opt. Phys., vol. 49, p. 182004, 2016. https://doi.org/10.1088/0953-4075/49/18/182004.Search in Google Scholar

[21] K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer, “GRASP: a general-purpose relativistic atomic structure program,” Comput. Phys. Commun., vol. 55, p. 425, 1989. https://doi.org/10.1016/0010-4655(89)90136-7.Search in Google Scholar

[22] I. P. Grant, B. J. Mckenzie, P. H. Norrington, D. F. Mayers, and N. C. Pyper, “Multi-configuration Dirac-Fock calculations of atomic structure,” Comput. Phys. Commun., vol. 21, p. 207, 1980. https://doi.org/10.1016/0010-4655(80)90041-7.Search in Google Scholar

[23] F. A. Parpia, C. F. Fischer, and I. P. Grant, “GRASP92: a package for large-scale relativistic atomic structure calculations,” Comput. Phys. Commum., vol. 94, p. 249, 1996. https://doi.org/10.1016/0010-4655(95)00136-0.Search in Google Scholar

[24] F. Peng, G. Jiang, and S. Song, “Transition properties of the Kα x-ray from Al through AlXII,” Phys. Scripta, vol. 76, p. 501, 2007. https://doi.org/10.1088/0031-8949/76/5/017.Search in Google Scholar

[25] F. Hu, G. Jiang, W. Hong, and L. Hao, “Wavelengths, transition probabilities, line strengths and oscillator strengths for the Kα and Kβ X-ray transitions in NiXIX through NiXXVII,” Eur. Phys. J. D, vol. 49, p. 293, 2008. https://doi.org/10.1140/epjd/e2008-00179-x.Search in Google Scholar

[26] L. H. Hao, G. Jiang, and H. J. Hou, “Effects of valence-valence, core-valence, and core-core correlations on the fine-structure energy levels in Al-like ions,” Phys. Rev. A, vol. 81, p. 022502, 2010. https://doi.org/10.1103/physreva.81.022502.Search in Google Scholar

[27] F. Hu, J. M. Yang, C. Wang, et al.., “Multiconfiguration Dirac-Fock calculations on multi-valence-electron systems: Benchmarks on Ga-like ions,” Phys. Rev. A, vol. 84, p. 042506, 2011.10.1103/PhysRevA.84.042506Search in Google Scholar

Received: 2022-04-24
Accepted: 2022-07-13
Published Online: 2022-11-02
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2022-0118/html
Scroll to top button