Startseite Similarity solution for one dimensional motion of a magnetized self-gravitating gas with variable density under the absorption of monochromatic radiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Similarity solution for one dimensional motion of a magnetized self-gravitating gas with variable density under the absorption of monochromatic radiation

  • Praveen Kumar Sahu EMAIL logo
Veröffentlicht/Copyright: 7. April 2022

Abstract

The impendence of azimuthal or axial magnetism in one-dimensional shock wave prevalence via a gas with monochromatic radiation for cylindrical and spherical geometry is examined. The travelling piston supplies the varying input of energy continuously and conditions of equilibrium flow through the whole field are retained. A regime of ODEs is derived by means of the regime of governing motion’s equations using the similarity process. The distributions of gas-dynamical quantities, obtained by their numerical integration, are discussed through figures. It is observed that the adiabatic index and the impendence of magnetism, as well as gravitation, lessen the shock intensity, however, the initial density variation index has the opposite behaviour on it.

MSC 2010: 76L05; 76T15; 83C50

Corresponding author: Praveen Kumar Sahu, Department of Mathematics, Government Shyama Prasad Mukharjee College, Sitapur 497111, Chhattisgarh, India, E-mail:

Award Identifier / Grant number: TAR/2018/000150

Acknowledgements

The author is thankful to Prof. M. K. Verma, Department of Physics, Indian Institute of Technology Kanpur, Kanpur–208016, India for fruitful discussions.

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the research grant no. TAR/2018/000150 under Teachers Associateship for Research Excellence (TARE) scheme from the Science and Engineering Research Board (SERB), India. The author gratefully acknowledges financial support from SERB.

  3. Conflict of interest statement: The author reports no conflict of interest at this time. If a conflict of interest is identified after publication, a correction will be submitted.

  4. Data Availability Statements: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

[1] M. Dryer, “Interplanetary shock waves generated by solar flares,” Space Sci. Rev., vol. 15, no. 4, pp. 403–468, 1974. https://doi.org/10.1007/bf00178215.Suche in Google Scholar

[2] R. E. Marshak, “Effect of radiation on shock wave behavior,” Phys. Fluid., vol. 1, no. 1, pp. 24–29, 1958. https://doi.org/10.1063/1.1724332.Suche in Google Scholar

[3] L. A. Elliott, “Similarity methods in radiation hydrodynamics,” Proc. Roy. Soc. Lond. Math. Phys. Sci., vol. 258, no. 1294, pp. 287–301, 1960.10.1098/rspa.1960.0188Suche in Google Scholar

[4] K. C. Wang, “The ‘piston problem’with thermal radiation,” J. Fluid Mech., vol. 20, no. 3, pp. 447–455, 1964. https://doi.org/10.1017/s0022112064001343.Suche in Google Scholar

[5] J. B. Helliwell, “Self-similar piston problems with radiative heat transfer,” J. Fluid Mech., vol. 37, no. 3, pp. 497–512, 1969. https://doi.org/10.1017/s0022112069000693.Suche in Google Scholar

[6] J. R. A. J. NiCastro, “Similarity analysis of the radiative gas dynamic equations with spherical symmetry,” Phys. Fluid., vol. 13, no. 8, pp. 2000–2006, 1970. https://doi.org/10.1063/1.1693197.Suche in Google Scholar

[7] A. F. Ghoniem, M. M. Kamel, S. A. Berger, and A. K. Oppenheim, “Effects of internal heat transfer on the structure of self-similar blast waves,” J. Fluid Mech., vol. 117, pp. 473–491, 1982. https://doi.org/10.1017/s0022112082001724.Suche in Google Scholar

[8] V. M. Khudyakov, “The self-similar problem of the motion of a gas under the action of monochromatic radiation,” Soviet Physics Doklady, vol. 28, 1983, p. 853.Suche in Google Scholar

[9] A. Zheltukhin, “A family of exact solutions of the equations of the one-dimensional motion of a gas under the influence of monochromatic radiation,” J. Appl. Math. Mech., vol. 52, no. 2, pp. 262–263, 1988. https://doi.org/10.1016/0021-8928(88)90145-1.Suche in Google Scholar

[10] O. Nath, “A study of self-similar cylindrical MHD shock waves in monochromatic radiation,” Astrophys. Space Sci., vol. 155, no. 1, pp. 163–167, 1989. https://doi.org/10.1007/bf00645219.Suche in Google Scholar

[11] O. Nath and H. S. Takhar, “Propagation of cylindrical shock waves under the action of monochromatic radiation,” Astrophys. Space Sci., vol. 166, no. 1, pp. 35–39, 1990. https://doi.org/10.1007/bf00655604.Suche in Google Scholar

[12] O. Nath, “Propagation of cylindrical shock waves in a rotating atmosphere under the action of monochromatic radiation,” Il Nuovo Cimento D, vol. 20, no. 12, pp. 1845–1852, 1998. https://doi.org/10.1007/bf03036600.Suche in Google Scholar

[13] G. Nath and P. K. Sahu, “Unsteady adiabatic flow behind a cylindrical shock in a rotational axisymmetric non-ideal gas under the action of monochromatic radiation,” Procedia Eng., vol. 144, pp. 1226–1233, 2016. https://doi.org/10.1016/j.proeng.2016.05.109.Suche in Google Scholar

[14] G. Nath and P. K. Sahu, “Flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with conduction and radiation heat flux,” Int. J. Appl. Comput. Math., vol. 3, no. 4, pp. 2785–2801, 2017. https://doi.org/10.1007/s40819-016-0260-x.Suche in Google Scholar

[15] G. Nath and P. K. Sahu, “Propagation of a cylindrical shock wave in a mixture of a non-ideal gas and small solid particles under the action of monochromatic radiation,” Combust. Explos. Shock Waves, vol. 53, no. 3, pp. 298–308, 2017. https://doi.org/10.1134/s0010508217030078.Suche in Google Scholar

[16] G. Nath and P. K. Sahu, “Self-similar solution of a cylindrical shock wave under the action of monochromatic radiation in a rotational axisymmetric dusty gas,” Commun. Theor. Phys., vol. 67, no. 3, p. 327, 2017. https://doi.org/10.1088/0253-6102/67/3/327.Suche in Google Scholar

[17] P. K. Sahu, “Similarity solution for unsteady flow behind a spherical shock wave in an ideal gas with increasing energy under the action of monochromatic radiation and gravitational field,” Int. J. Adv. Sci. Eng. Technol., vol. 6, no. 3, pp. 50–54, 2018.Suche in Google Scholar

[18] P. K. Sahu, “Shock wave propagation in perfectly conducting rotational axisymmetric two-phase medium with increasing energy under the action of heat conduction and radiation heat flux,” Chin. J. Phys., vol. 72, pp. 176–190, 2021. https://doi.org/10.1016/j.cjph.2021.03.011.Suche in Google Scholar

[19] P. K. Sahu, “Flow behind the magnetogasdynamical cylindrical shock wave in rotating non-ideal dusty gas with monochromatic radiation,” Plasma Res. Express, vol. 3, no. 4, 2021, Art no. 045004. https://doi.org/10.1088/2516-1067/ac3c4d.Suche in Google Scholar

[20] M. K. Verma, “Statistical theory of magnetohydrodynamic turbulence: recent results,” Phys. Rep., vol. 401, nos. 5–6, pp. 229–380, 2004. https://doi.org/10.1016/j.physrep.2004.07.007.Suche in Google Scholar

[21] O. Nath and H. S. Takhar, “Spherical MHD shock waves under the action of monochromatic radiation,” Astrophys. Space Sci., vol. 202, no. 2, pp. 355–362, 1993. https://doi.org/10.1007/bf00626888.Suche in Google Scholar

[22] L. Hartmann, Accretion Processes in Star Formation, Cambridge, UK, Cambridge University Press, 1998.Suche in Google Scholar

[23] B. Balick and A. Frank, “Shapes and shaping of planetary nebulae,” Annu. Rev. Astron. Astrophys., vol. 40, no. 1, pp. 439–486, 2002. https://doi.org/10.1146/annurev.astro.40.060401.093849.Suche in Google Scholar

[24] G. Nath, P. K. Sahu, and M. Dutta, “Magnetohydrodynamic cylindrical shock in a rotational axisymmetric non-ideal gas under the action of monochromatic radiation,” Procedia Eng., vol. 127, pp. 1126–1133, 2015. https://doi.org/10.1016/j.proeng.2015.11.476.Suche in Google Scholar

[25] G. Nath, P. K. Sahu, and S. Chaurasia, “Self-similar solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas with magnetic field,” Chin. J. Phys., vol. 58, pp. 280–293, 2019. https://doi.org/10.1016/j.cjph.2019.02.007.Suche in Google Scholar

[26] P. K. Sahu, “Unsteady flow behind an MHD exponential shock wave in a rotational axisymmetric non-ideal gas with conductive and radiative heat fluxes,” in International Conference on Innovation in Modern Science and Technology, Cham, Springer, 2019, pp. 1049–1059.10.1007/978-3-030-42363-6_121Suche in Google Scholar

[27] P. K. Sahu, “Shock wave driven out by a piston in a mixture of a non-ideal gas and small solid particles under the influence of azimuthal or axial magnetic field,” Braz. J. Phys., vol. 50, no. 5, pp. 548–565, 2020. https://doi.org/10.1007/s13538-020-00762-x.Suche in Google Scholar

[28] P. K. Sahu, “The influence of magnetic and gravitational fields in a non-ideal dusty gas with heat conduction and radiation heat flux,” Indian J. Phys., pp. 1–15, 2022. https://doi.org/10.1007/s12648-021-02269-w.Suche in Google Scholar

[29] G. I. Taylor, “The formation of a blast wave by a very intense explosion I. Theoretical discussion,” Proc. Roy. Soc. Lond. Math. Phys. Sci., vol. 201, no. 1065, pp. 159–174, 1950.10.1098/rspa.1950.0049Suche in Google Scholar

[30] G. I. Taylor, “The formation of a blast wave by a very intense explosion.-II. The atomic explosion of 1945,” Proc. Roy. Soc. Lond. Math. Phys. Sci., vol. 201, no. 1065, pp. 175–186, 1950.10.1098/rspa.1950.0050Suche in Google Scholar

[31] L. I. Sedov, Similarity and Dimensional Methods in Mechanics, New York, Academic Press, 1959.Suche in Google Scholar

[32] B. C. Koo and C. F. McKee, “Dynamics of adiabatic blast waves in media of finite mass,” Astrophys. J., vol. 354, pp. 513–528, 1990. https://doi.org/10.1086/168712.Suche in Google Scholar

[33] E. Waxman and D. Shvarts, “Second-type self-similar solutions to the strong explosion problem,” Phys. Fluid. Fluid Dynam., vol. 5, no. 4, pp. 1035–1046, 1993. https://doi.org/10.1063/1.858668.Suche in Google Scholar

[34] A. Sakurai, “Propagation of spherical shock waves in stars,” J. Fluid Mech., vol. 1, no. 4, pp. 436–453, 1956. https://doi.org/10.1017/s0022112056000275.Suche in Google Scholar

[35] M. H. Rogers, “Analytic solutions for the blast-wave problem with an atmosphere of varying density,” Astrophys. J., vol. 125, p. 478, 1957. https://doi.org/10.1086/146323.Suche in Google Scholar

[36] P. Rosenau and S. Frankenthal, “Equatorial propagation of axisymmetric magnetohydrodynamic shocks,” Phys. Fluid., vol. 19, no. 12, pp. 1889–1899, 1976. https://doi.org/10.1063/1.861424.Suche in Google Scholar

[37] O. Nath, S. N. Ojha, and H. S. Takhar, “Propagation of a shock wave in a rotating interplanetary atmosphere with increasing energy,” Theor. Chim. Acta, vol. 44, no. 1, pp. 87–98, 1999.Suche in Google Scholar

[38] J. P. Vishwakarma and A. K. Yadav, “Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field,” Eur. Phys. J. B, vol. 34, no. 2, pp. 247–253, 2003. https://doi.org/10.1140/epjb/e2003-00218-0.Suche in Google Scholar

[39] G. Nath and P. K. Sahu, “Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density,” SpringerPlus, vol. 5, no. 1, pp. 1–18, 2016. https://doi.org/10.1186/s40064-016-3119-z.Suche in Google Scholar PubMed PubMed Central

[40] G. Nath and P. K. Sahu, “Similarity solution for the flow behind a cylindrical shock wave in a rotational axisymmetric gas with magnetic field and monochromatic radiation,” Ain Shams Eng. J., vol. 9, no. 4, pp. 1151–1159, 2018. https://doi.org/10.1016/j.asej.2016.06.009.Suche in Google Scholar

[41] G. Nath, “Approximate analytical solution for the propagation of shock waves in self-gravitating perfect gas via power series method: isothermal flow,” J. Astrophys. Astron., vol. 41, no. 1, pp. 1–19, 2020. https://doi.org/10.1007/s12036-020-09638-7.Suche in Google Scholar

[42] G. Nath, “Cylindrical shock wave propagation in a self-gravitating rotational axisymmetric perfect gas under the influence of azimuthal or axial magnetic field and monochromatic radiation with variable density,” Pramana, vol. 95, no. 3, pp. 1–16, 2021. https://doi.org/10.1007/s12043-021-02160-7.Suche in Google Scholar

[43] S. Shinde, “Propagation of cylindrical shock waves in a non-uniform rotating stellar atmosphere under the action of monochromatic radiation and gravitation,” Math. Comput. Appl., vol. 11, no. 2, pp. 95–102, 2006. https://doi.org/10.3390/mca11020095.Suche in Google Scholar

[44] P. K. Sahu, “Self-similar solution of spherical shock wave propagation in a mixture of a gas and small solid particles with increasing energy under the influence of gravitational field and monochromatic radiation,” Commun. Theor. Phys., vol. 70, no. 2, p. 197, 2018. https://doi.org/10.1088/0253-6102/70/2/197.Suche in Google Scholar

[45] G. Nath, “Shock wave driven out by a piston in a mixture of a non-ideal gas and small solid particles under the influence of the gravitation field with monochromatic radiation,” Chin. J. Phys., vol. 56, no. 6, pp. 2741–2752, 2018. https://doi.org/10.1016/j.cjph.2018.09.033.Suche in Google Scholar

[46] P. K. Sahu, “Similarity solution for a spherical shock wave in a non-ideal gas under the influence of gravitational field and monochromatic radiation with increasing energy,” Math. Methods Appl. Sci., vol. 42, no. 14, pp. 4734–4746, 2019. https://doi.org/10.1002/mma.5687.Suche in Google Scholar

[47] P. K. Sahu, “Similarity solution for the flow behind an exponential shock wave in a rotational axisymmetric non-ideal gas under the influence of gravitational field with conductive and radiative heat fluxes,” in International Conference on Innovation in Modern Science and Technology, Cham, Springer, 2019, pp. 1060–1070.10.1007/978-3-030-42363-6_122Suche in Google Scholar

[48] G. Nath, “Spherical shock generated by a moving piston in a nonideal gas under gravitation field with monochromatic radiation and magnetic field,” J. Eng. Phys. Thermophys., vol. 93, no. 4, pp. 911–923, 2020. https://doi.org/10.1007/s10891-020-02193-6.Suche in Google Scholar

[49] P. K. Sahu, “Propagation of an exponential shock wave in a rotational axisymmetric isothermal or adiabatic flow of a self-gravitating non-ideal gas under the influence of axial or azimuthal magnetic field,” Chaos, Solit. Fractals, vol. 135, p. 109739, 2020. https://doi.org/10.1016/j.chaos.2020.109739.Suche in Google Scholar

[50] P. K. Sahu, “Magnetogasdynamic exponential shock wave in a self-gravitating, rotational axisymmetric non-ideal gas under the influence of heat-conduction and radiation heat-flux,” Ricerche Matemat., pp. 1–37, 2021. https://doi.org/10.1007/s11587-021-00563-7.Suche in Google Scholar

[51] P. K. Sahu, “Analysis of magnetogasdynamic spherical shock wave in dusty real gas with gravitational field and monochromatic radiation,” Eur. Phys. J. Plus, vol. 136, no. 4, pp. 1–19, 2021. https://doi.org/10.1140/epjp/s13360-021-01282-6.Suche in Google Scholar

[52] S. C. Lin, “Cylindrical shock waves produced by instantaneous energy release,” J. Appl. Phys., vol. 25, no. 1, pp. 54–57, 1954. https://doi.org/10.1063/1.1721520.Suche in Google Scholar

[53] B. Arad, Y. Gazit, and A. Ludmirsky, “A sliding discharge device for producing cylindrical shock waves,” J. Phys. Appl. Phys., vol. 20, no. 3, p. 360, 1987. https://doi.org/10.1088/0022-3727/20/3/019.Suche in Google Scholar

[54] N. N. Kochina and N. S. Melnikova, “On unsteady motion of a gas forced out by a piston with counter pressure neglected,” J. Appl. Math. Mech., vol. 22, no. 4, pp. 444–451, 1958. https://doi.org/10.1016/0021-8928(58)90003-0.Suche in Google Scholar

[55] Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. II, New York, Academic Press, 1967.Suche in Google Scholar

[56] H. Steiner and T. Hirschler, “A self-similar solution of a shock propagation in a dusty gas,” Eur. J. Mech. B Fluid, vol. 21, no. 3, pp. 371–380, 2002. https://doi.org/10.1016/s0997-7546(02)01181-0.Suche in Google Scholar

[57] R. A. Freeman and J. D. Craggs, “Shock waves from spark discharges,” J. Phys. D Appl. Phys., vol. 2, p. 421, 1969. https://doi.org/10.1088/0022-3727/2/3/315.Suche in Google Scholar

[58] M. Onsi, H. Przysiezniak, and J. M. Pearson, “Equation of state of homogeneous nuclear matter and the symmetry coefficient,” Phys. Rev. C, vol. 50, no. 1, p. 460, 1994. https://doi.org/10.1103/physrevc.50.460.Suche in Google Scholar PubMed

[59] R. H. Casali and D. P. Menezes, “Adiabatic index of hot and cold compact objects,” Braz. J. Phys., vol. 40, no. 2, pp. 166–171, 2010. https://doi.org/10.1590/s0103-97332010000200007.Suche in Google Scholar

Received: 2021-08-29
Revised: 2022-01-30
Accepted: 2022-03-07
Published Online: 2022-04-07
Published in Print: 2022-07-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0254/html?lang=de
Button zum nach oben scrollen