Startseite Mechanical and thermophysical properties of 4d-transition metal mononitrides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical and thermophysical properties of 4d-transition metal mononitrides

  • Shakti Yadav EMAIL logo , Ramanshu P. Singh , Giridhar Mishra und Devraj Singh
Veröffentlicht/Copyright: 18. März 2022

Abstract

The second and third order elastic constants (SOECs and TOECs) of 4d-transition metal mononitrides XN (X: Zr and Nb) have been computed in the temperature range 0 K–500 K using Coulomb and Born–Mayer potential up to second nearest neighbours. In order to investigate the mechanical stability of XN, the computed values of SOECs have been utilized to find out Young’s modulus, bulk modulus, shear modulus, Zener anisotropy and Poisson’s ratio. Furthermore, the SOECs are applied to compute the wave velocities for shear and longitudinal modes of propagation along ⟨100⟩, ⟨110⟩ and ⟨111⟩ crystallographic orientations in the temperature range 100 K–500 K. Temperature dependent Debye average velocity, ultrasonic Grüneisen parameters (UGPs) and Debye temperature have been evaluated. In present work the thermal conductivity of chosen materials has also been evaluated using Morelli-Slack’s approach. Specific heat and total internal thermal energy have been calculated in the temperature range 100 K–500 K on the basis of Debye theory. Thermal relaxation time, acoustic coupling constants and attenuation of ultrasonic waves due to thermo-elastic relaxation and phonon–phonon interaction mechanisms have been calculated in the temperature range 100 K–500 K. The obtained results of present investigation have been compared with available other similar type of materials.


Corresponding author : Shakti Yadav, Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, India, E-mail:

Award Identifier / Grant number: 09/1014(0012)/2019-EMR-I

Acknowledgments

One of the authors (SY) is thankful to Council for Scientific and Industrial Research – Human Resource Development Group (CSIR – HRDG) for providing financial assistance in form of CSIR – Junior Research Fellowship (09/1014(0012)/2019-EMR-I).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. Sai Gautam and K. C. Hari Kumar, “Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: a first principles study,” J. Alloys Compd., vol. 587, no. 13, pp. 380–386, 2014. https://doi.org/10.1016/j.jallcom.2013.10.156.Suche in Google Scholar

[2] Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H. J. Fan, “Transition metal carbides and nitrides in energy storage and conversion,” Adv. Sci., vol. 3, no. 5, p. 1500286, 2016. https://doi.org/10.1002/advs.201500286.Suche in Google Scholar PubMed PubMed Central

[3] X. J. Chen, V. V. Struzhkin, Z. Wu et al.., “Hard superconducting nitrides,” Proc. Natl. Acad. Sci., vol. 102, no. 9, pp. 3198–3201, 2005. https://doi.org/10.1073/pnas.0500174102.Suche in Google Scholar PubMed PubMed Central

[4] X. Tan, X. Li, Y. Wang, X. Liu, C. Yu, and Y. Ren, “Ab-initio study on the stability, electronic and mechanical properties of transition metal nitrides under external pressure,” Solid State Sci., vol. 66, pp. 16–22, 2017. https://doi.org/10.1016/j.solidstatesciences.2017.02.005.Suche in Google Scholar

[5] R. W. Harrison and W. E. Lee, “Processing and properties of ZrC, ZrN and ZrCN ceramics: a review,” Adv. Appl. Ceram., vol. 115, no. 5, pp. 294–307, 2016. https://doi.org/10.1179/1743676115y.0000000061.Suche in Google Scholar

[6] D. G. Sangiovanni, “Inherent toughness and fracture mechanisms of refractory transition-metal nitrides via density-functional molecular dynamics,” Acta Mater., vol. 151, pp. 11–20, 2018. https://doi.org/10.1016/j.actamat.2018.03.038.Suche in Google Scholar

[7] K. K. Korir, G. O. Amolo, N. W. Makau, and D. P. Joubert, “First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures,” Diam. Relat. Mater., vol. 20, no. 2, pp. 157–164, 2011. https://doi.org/10.1016/j.diamond.2010.11.021.Suche in Google Scholar

[8] V. F. Hlynsson, E. Skúlason, and A. L. Garden, “A systematic, first-principles study of the structural preference and magnetic properties of mononitrides of the d-block metals,” J. Alloys Compd., vol. 603, pp. 172–179, 2014. https://doi.org/10.1016/j.jallcom.2014.02.153.Suche in Google Scholar

[9] W. Chen and J. Z. Jiang, “Elastic properties and electronic structures of 4d- and 5d-transition metal mononitrides,” J. Alloys Compd., vol. 499, no. 2, pp. 243–254, 2010. https://doi.org/10.1016/j.jallcom.2010.03.176.Suche in Google Scholar

[10] C. R. Weinberger, X. X. Yu, H. Yu, and G. B. Thompson, “Ab initio investigations of the phase stability in group IVB and VB transition metal nitrides,” Comput. Mater. Sci., vol. 138, pp. 333–345, 2017. https://doi.org/10.1016/j.commatsci.2017.07.005.Suche in Google Scholar

[11] E. Zhao, J. Wang, J. Meng, and Z. Wu, “Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles,” Comput. Mater. Sci., vol. 47, no. 4, pp. 1064–1071, 2010. https://doi.org/10.1016/j.commatsci.2009.12.011.Suche in Google Scholar

[12] R. Yang, Z. Zhao, F. Wu, Q. Wei, and M. Xue, “Study on structural, mechanical, electronic properties and Debye temperature of four NbN structures,” Comput. Theor. Chem., vol. 1196, p. 113113, 2021. https://doi.org/10.1016/j.comptc.2020.113113.Suche in Google Scholar

[13] U. Kaatze, “Non-critical fluctuations of liquids: cinderella of ultrasonic spectroscopy?” Int. J. Thermophys., vol. 35, no. 11, pp. 1976–1989, 2014. https://doi.org/10.1007/s10765-013-1480-5.Suche in Google Scholar

[14] M. Navarrete, F. A. Godínez, and M. Villagrán-Muniz, “Elastic properties of compacted clay soils by laser ultrasonics,” Int. J. Thermophys., vol. 34, nos. 8–9, pp. 1810–1816, 2013. https://doi.org/10.1007/s10765-013-1389-z.Suche in Google Scholar

[15] M. Wan, R. R. Yadav, D. Singh, M. Sridhar Panday, and V. Rajendran, “Temperature dependent ultrasonic and thermophysical properties of polyaniline nanofibers reinforced epoxy composites,” Compos. B Eng., vol. 87, pp. 40–46, 2016. https://doi.org/10.1016/j.compositesb.2015.10.011.Suche in Google Scholar

[16] K. Brugger, “Thermodynamic definition of higher order elastic coefficients,” Phys. Rev., vol. 133, no. 6A, pp. A1611–A1612, 1964. https://doi.org/10.1103/physrev.133.a1611.Suche in Google Scholar

[17] P. B. Ghate, “Third-order elastic constants of alkali halide crystals,” Phys. Rev., vol. 139, no. 5A, pp. A1666–A1674, 1965. https://doi.org/10.1103/physrev.139.a1666.Suche in Google Scholar

[18] S. Mori and Y. Hiki, “Calculation of the third- and fourth-order elastic constants of alkali halide crystals,” J. Phys. Soc. Jpn., vol. 45, no. 5, pp. 1449–1456, 1978. https://doi.org/10.1143/jpsj.45.1449.Suche in Google Scholar

[19] M. P. Tosi, “Cohesion of ionic solids in the born model,” in Solid State Physics, vol. 16, F. Seitz and D. Turnbull, Eds., New York, Academic Press, 1964, p. 1.10.1016/S0081-1947(08)60515-9Suche in Google Scholar

[20] V. Bhalla, R. Kumar, C. Tripathy, and D. Singh, “Mechanical and thermal properties of praseodymium monopnictides: an ultrasonic study,” Int. J. Mod. Phys. B, vol. 27, no. 22, p. 1350116, 2013. https://doi.org/10.1142/s0217979213501166.Suche in Google Scholar

[21] A. K. Verma, S. Kaushik, D. Singh, and R. R. Yadav, “Elastic and thermal properties of carbides of U, Pu, and Am,” J. Phys. Chem. Solid., vol. 133, pp. 21–27, 2019. https://doi.org/10.1016/j.jpcs.2019.05.006.Suche in Google Scholar

[22] V. Bhalla and D. Singh, “Extending Euler’s product for 2,” Indian J. Pure Appl. Phys., vol. 54, no. 1, p. 40, 2016.Suche in Google Scholar

[23] V. Bhalla, D. Singh, and S. K. Jain, “Mechanical and thermophysical properties of cerium monopnictides,” Int. J. Thermophys., vol. 37, no. 3, p. 1, 2016. https://doi.org/10.1007/s10765-016-2038-0.Suche in Google Scholar

[24] C. Kittel, Introduction to Solid State Physics, 8th ed. New York, John Wiley & Sons, 2005.Suche in Google Scholar

[25] R. Nava and J. Romero, “Ultrasonic Grüneisen parameter for nonconducting cubic crystals,” J. Acoust. Soc. Am., vol. 64, no. 2, pp. 529–532, 1978. https://doi.org/10.1121/1.382004.Suche in Google Scholar

[26] K. Brugger, “Generalized Grüneisen parameters in the anisotropic Debye model,” Phys. Rev., vol. 137, no. 6A, pp. A1826–A1827, 1965. https://doi.org/10.1103/physrev.137.a1826.Suche in Google Scholar

[27] D. Singh, G. Mishra, R. Kumar, and R. R. Yadav, “Temperature dependence of elastic and ultrasonic properties of sodium borohydride,” Commun. Phys., vol. 27, no. 2, p. 151, 2017. https://doi.org/10.15625/0868-3166/27/2/9615.Suche in Google Scholar

[28] A. Akhiezer, “On the absorption of sound in solids,” J. Phys., vol. 1, no. 1, p. 277, 1939.Suche in Google Scholar

[29] W. P. Mason, Physical Acoustics, Volume III Part B: Principles and Methods, Lattice Dynamics, New York, Academic Press, 1965.Suche in Google Scholar

[30] S. O. Pillai, Solid State Physics, 6th ed. New Delhi, New Age International (P) Limited, Publishers, 2005.Suche in Google Scholar

[31] D. E. Gray, AIP Handbook, 3rd ed. New York, McGraw-Hill Book Company, 1972.Suche in Google Scholar

[32] D. T. Morelli and G. A. Slack, “High lattice thermal conductivity solids,” in High Thermal Conductivity Materials, S. L. Shindé and J. S. Goela, Eds., New York, Springer-Verlag, 2006, p. 37.10.1007/0-387-25100-6_2Suche in Google Scholar

[33] C. S. G. Cousins, “New relations between elastic constants of different orders under central force interactions,” J. Phys. C Solid State Phys., vol. 4, no. 10, pp. 1117–1123, 1971. https://doi.org/10.1088/0022-3719/4/10/020.Suche in Google Scholar

[34] Y. Linghu, X. Wu, W. Rui, W. Li, and Q. Liu, “The phase stability, ductility and hardness of Mon and NbN: first-principles study,” J. Electron. Mater., vol. 46, no. 3, pp. 1914–1925, 2017. https://doi.org/10.1007/s11664-016-5258-y.Suche in Google Scholar

[35] V. Bhalla, D. Singh, and S. K. Jain, “Mechanical and thermophysical properties of rare-earth monopnictides,” Int. J. Comput. Mater. Sci. Eng., vol. 5, no. 3, p. 1650012, 2016. https://doi.org/10.1142/s2047684116500123.Suche in Google Scholar

[36] J. Adachi, K. Kurosaki, M. Uno, and S. Yamanaka, “Thermal and electrical properties of zirconium nitride,” J. Alloys Compd., vol. 399, nos. 1–2, pp. 242–244, 2005. https://doi.org/10.1016/j.jallcom.2005.03.005.Suche in Google Scholar

[37] D. Singh, D. K. Pandey, and P. K. Yadawa, “Ultrasonic wave propagation in rare-earth monochalcogenides,” Cent. Eur. J. Phys., vol. 7, no. 1, p. 198, 2009. https://doi.org/10.2478/s11534-008-0130-1.Suche in Google Scholar

Received: 2021-11-11
Revised: 2022-01-31
Accepted: 2022-02-25
Published Online: 2022-03-18
Published in Print: 2022-07-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0332/html
Button zum nach oben scrollen