Startseite An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine

  • Wajeehah Shahid , Samiah Shahid , Muhammad Aamir Iqbal , Jianhua Huo , Rashid Karim und Faryal Idrees EMAIL logo
Veröffentlicht/Copyright: 1. September 2021

Abstract

In this study, novel hydrothermal synthesis is used to explore the impact of photocatalytic activity on H2 production using an aqueous solution of triethanolamine (TEoA) in TiO2 nanostructures designed with varying molar concentrations of HCl, and the production of molecular hydrogen is explored as a function of molar concentration. A solar simulator is utilized to assess the photocatalytic activities of methyl orange degradation under UV light irradiation and molecular H2 production. Also, XRD patterns and SEM images are explored to show agglomerated nanoparticle formation, and an EDX spectrum is employed to confirm TiO2 compositions. The band gap analysis of produced nanostructures is performed using a UV-Vis spectrometer and is found to be varying in between 2.5 and 3.0 eV, while the maximum methyl orange degradation corresponds to 1.0 M concentration of HCl, indicating an enhanced hydrogen production. To meet the foreseeable future energy crises and worsening environmental challenges, we may need sustainable energy sources, and photocatalysis molecular H2 production offers a viable alternative to fossil fuels that can be employed to tackle future difficulties.


Corresponding author: Faryal Idrees, Department of Physics, University of the Punjab, Lahore 54000, Pakistan, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51602281

Funding source: Natural Science Foundation of Jiangsu Province

Award Identifier / Grant number: BK20160473

Funding source: China Postdoctoral Science Foundation doi.org/10.13039/501100002858

Award Identifier / Grant number: 2017M621832

Funding source: Yangzhou University doi.org/10.13039/501100007062

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is financially supported by PSF-NSFC-IV/Phy/P-PU (31), Alexendar Von Humboldt Foundation (Project No 60421802), National Natural Science Foundation of China (51602281), Natural Science Foundation of Jiangsu Province (BK20160473), China Postdoctoral Science Foundation (2017M621832) and Yangzhou University High-end Talent Support Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. H. Do, D. L. T. Nguyen, X. C. Nguyen, et al.., “Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review,” Arabian J. Chem., vol. 13, pp. 3653–3671, 2020. https://doi.org/10.1016/j.arabjc.2019.12.012.Suche in Google Scholar

[2] S. Z. Baykara, “Hydrogen: a brief overview on its sources, production and environmental impact,” Int. J. Hydrogen Energy, vol. 43, pp. 10605–10614, 2018. https://doi.org/10.1016/j.ijhydene.2018.02.022.Suche in Google Scholar

[3] R. C. Catapan, L. R. Cancino, A. A. M. Oliveira, C. O. Schwarz, H. Nitschke, and T. Frank, “Potential for onboard hydrogen production in an direct injection ethanol fueled spark ignition engine with EGR,” Fuel, vol. 234, pp. 441–446, 2018. https://doi.org/10.1016/j.fuel.2018.07.023.Suche in Google Scholar

[4] F. Idrees, C. Cao, R. Ahmed, et al.., “Novel nano-flowers of Nb2O5 by template free synthesis and enhanced photocatalytic response under visible light,” Sci. Adv. Mater., vol. 7, pp. 1298–1303, 2015. https://doi.org/10.1166/sam.2015.2044.Suche in Google Scholar

[5] M. M. Khan, S. F. Adil, and A. Al-Mayouf, “Metal oxides as photocatalysts,” J. Saudi Chem. Soc., vol. 19, pp. 462–464, 2015.10.1016/j.jscs.2015.04.003Suche in Google Scholar

[6] U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems,” J. Photochem. Photobiol., C, vol. 9, pp. 1–12, 2008. https://doi.org/10.1016/j.jphotochemrev.2007.12.003.Suche in Google Scholar

[7] D. R. Uhlmann and G. Teowee, “Sol-gel science and technology: current state and future prospects,” J. Sol-Gel Sci. Technol., vol. 13, pp. 153–162, 1998. https://doi.org/10.1023/A:1008692430779.10.1023/A:1008692430779Suche in Google Scholar

[8] A. C. Lam and R. S. Schechter, “The theory of diffusion in microemulsion,” J. Colloid Interface Sci., vol. 120, pp. 56–63, 1987. https://doi.org/10.1016/0021-9797(87)90322-5.Suche in Google Scholar

[9] K. M. Reza, A. S. W. Kurny, and F. Gulshan, “Parameters affecting the photocatalytic degradation of dyes using TiO2: a review,” Appl. Water Sci., vol. 7, pp. 1569–1578, 2017. https://doi.org/10.1007/s13201-015-0367-y.Suche in Google Scholar

[10] J. Zhang, P. Zhou, J. Liu, and J. Yu, “New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2,” Phys. Chem. Chem. Phys., vol. 16, pp. 20382–20386, 2014. https://doi.org/10.1039/c4cp02201g.Suche in Google Scholar PubMed

[11] S.-P. Hong, J. Park, S. SM Bhat, et al.., “Comprehensive study on the morphology control of TiO2 nanorods on foreign substrates by the hydrothermal method,” Cryst. Growth Des., vol. 18, pp. 6504–6512, 2018. https://doi.org/10.1021/acs.cgd.8b00609.Suche in Google Scholar

[12] I. Rossetti, A. Villa, M. Compagnoni, et al.., “CO2 photoconversion to fuels under high pressure: effect of TiO2 phase and of unconventional reaction conditions,” Catal. Sci. Technol., vol. 5, pp. 4481–4487, 2015. https://doi.org/10.1039/c5cy00756a.Suche in Google Scholar

[13] A. F. Alkaim, T. A. Kandiel, F. H. Hussein, R. Dillert, and D. W. Bahnemann, “Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity,” Appl. Catal. Gen., vol. 466, pp. 32–37, 2013. https://doi.org/10.1016/j.apcata.2013.06.033.Suche in Google Scholar

[14] I. F. Teixeira, J. Quiroz, M. S. Homsi, and P. H. C. Camargo, “An overview of the photocatalytic H2 evolution by semiconductor-based materials for nonspecialists,” J. Braz. Chem. Soc., vol. 31, pp. 211–229, 2020. https://doi.org/10.21577/0103-5053.20190255.Suche in Google Scholar

[15] V. Kumaravel, S. Mathew, J. Bartlett, and S. C. Pillai, “Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances,” Appl. Catal. B Environ., vol. 244, pp. 1021–1064, 2019. https://doi.org/10.1016/j.apcatb.2018.11.080.Suche in Google Scholar

[16] J. Corredor, M. J. Rivero, C. M. Rangel, F. Gloaguen, and I. Ortiz, “Comprehensive review and future perspectives on the photocatalytic hydrogen production,” J. Chem. Technol. Biotechnol., vol. 94, pp. 3049–3063, 2019. https://doi.org/10.1002/jctb.6123.Suche in Google Scholar

[17] N. L. Reddy, V. N. Rao, M. Vijayakumar, et al.., “A review on frontiers in plasmonic nano-photocatalysts for hydrogen production,” Int. J. Hydrogen Energy, vol. 44, pp. 10453–10472, 2019. https://doi.org/10.1016/j.ijhydene.2019.02.120.Suche in Google Scholar

[18] P. Makuła, M. Pacia, and W. Macyk, “How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra,” J. Phys. Chem. Lett., vol. 9, pp. 6814–6817, 2018.10.1021/acs.jpclett.8b02892Suche in Google Scholar PubMed

Received: 2021-05-21
Accepted: 2021-08-01
Published Online: 2021-09-01
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0135/html?lang=de
Button zum nach oben scrollen