Home Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
Article
Licensed
Unlicensed Requires Authentication

Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves

  • Akbar Nazari-Golshan EMAIL logo and Vahid Fallahi
Published/Copyright: August 23, 2021

Abstract

Propagation of dust ion-acoustic (DIA) Gardner wave in a dusty electron–positron–ion (e–p–i) plasma is investigated. This plasma consists of q-distributed electrons and positrons, warm ions, and dust grains. The effects of the electron nonextensivity, positron nonextensivity, and fractional parameter on the properties of DIA Gardner wave are investigated. Space fractional Gardner (SFG) equation is derived using the semi inverse technique. An efficient modified G′/G-expansion method is presented to solve the SFG equation. It is found that the amplitude of the DIA Gardner wave increases with an increase in space fractional parameter β and spatial parameter ζ . On other hands, the DIA Gardner wave shape can be modulated using the space fractional parameter β . Our results may help understand the astrophysical environments such as star magnetospheres, solar flares, and galactic nuclei.


Corresponding author: Akbar Nazari-Golshan, Physics Department, Shahed University, P.O.B: 18155/159, Tehran, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: Derivation of SFG equation

To formulate the space fractional Gardner (SFG) equation, introducing a potential function, U ζ , τ , as ϕ ζ , τ = U ζ ζ , τ = U ζ , and substituting it into Eq. (8), then the Gardner equation is obtained as:

(A1) U ζ τ + A 1 U ζ U ζ ζ + A 2 U ζ 2 U ζ ζ + A 3 U ζ ζ ζ ζ = 0 ,

The functional of Eq. (A1) is given by:

(A2) H U = d ζ d τ U t 1 U ζ τ + t 2 A 1 U ζ U ζ ζ + t 3 A 2 U ζ 2 U ζ ζ + t 4 A 3 U ζ ζ ζ ζ

where t 1, t 2, t 3, and t 4 are constants.

Integrating Eq. (A2) by parts using U ζ R = U ζ ζ R = U ζ ζ ζ R = U ζ T = 0 , we obtain:

(A3) H U = d ζ d τ t 1 U ζ U τ 1 2 t 2 A 1 U ζ 3 1 3 t 3 A 2 U ζ 4 + t 4 A 3 U ζ ζ 2

By taking the first variation of Eq. (A3) gives:

t 1 = 1 / 2 , t 2 = 1 / 3 , t 3 = 1 / 4 , t 4 = 1 / 2 .

Therefore, the Lagrangian of Gardner equation is presented as:

(A4) F U τ , U ζ , U ζ ζ = 1 2 U ζ U τ A 1 6 U ζ 3 A 2 12 U ζ 4 + A 3 2 U ζ ζ 2 ,

Similarity, Lagrangian of the fractional Gardner equation is written as:

(A5) K U τ , D ζ β 0 U , D ζ β β 0 U = 1 2 U τ D ζ β 0 U A 1 6 D ζ β 0 U 3 A 2 12 D ζ β 0 U 4 + A 3 2 D ζ β β 0 U 2 , 0 < β 1 ,

In Eq. (A5), D ζ β 0 is given by Eq. (11).

Thus, the functional of SFG equation is given by:

(A6) J U = R d ζ T d τ K U τ , D ζ β 0 U , D ζ β β 0 U ,

Taking the first variations of Eq. (A6), according to the semi inverse and Agrawal techniques [4951], respect to U, δ J U , and optimizing it , δ J U = 0, leads to:

(A7) τ K U τ D ζ β 0 K D ζ β 0 U + D ζ β β 0 K D ζ β β 0 U = 0 .

Substituting Eq. (A5) into Eq. (A7) and applying ϕ = D ζ β 0 U , lead to

(A8) ϕ τ + A 1 ϕ D ζ β 0 ϕ + A 2 ϕ 2 D ζ β 0 ϕ + A 3 D ζ β β β 0 ϕ = 0 0 < β 1 .

Equation (A8) is called SFG equation that describes the DIA waves.

Appendix B: An efficient modified G′/G-expansion method

A nonlinear space fractional PDE has the following form:

(B1) Q U , U t , U t t , D x β 0 U , U D x β 0 U , D x β β 0 U , = 0 0 < β 1 .

where Q is a polynomial.(U, U tt , … ) and ( D x β 0 U , U t D x β 0 U , ) are derivatives and space fractional derivatives of U respectively.

The mentioned method has the main steps as follow:

Step 1: A fractional complex transform [52, 53] is proposed to derive an integer order ODEs:

(B2) U x , t = U ρ ρ = f x β Γ ( 1 + β ) g t

Substituting Eq. (B2) into Eq. (B1) gives an ordinary differential equation as follows:

(B3) Q U , U ρ , 2 U ρ 2 , 3 U ρ 3 , = 0

Step 2: In modified G′/G-expansion method, the solution of Eq. (B3) can be written as:

(B4) U ρ = j = 0 n c j G ( ρ ) / ρ G ( ρ ) j , c n 0 ,

where c j , j = 0, 1, 2, … , n are constants. While, G(ρ) satisfies the following ODE

(B5) 2 G ( ρ ) ρ 2 + d 1 G ( ρ ) ρ + d 2 G ( ρ ) = 0 ,

where d 1, d 2 are constants.

Step 3: By balancing the highest order derivatives with the nonlinear term in Eq. (B3), n is obtained. Then, using the general solution of Eq. (B5), substituting Eq. (B4) into Eq. (B3), collecting all coefficients G ( ρ ) / ρ G ( ρ ) j with the same power together, c j is obtained. Finally, by substituting c j , d 1, d 2, f and g, the solution of Eq. (B1) can be obtained.

References

[1] D. C. Clayton, “Maxwellian relative energies and solar neutrinos,” Nature, vol. 249, p. 131, 1974. https://doi.org/10.1038/249131a0.Search in Google Scholar

[2] J. M. Liu, J. S. De Groot, J. P. Matte, T. W. Johnston, and R. P. Drake, “Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions,” Phys. Rev. Lett., vol. 72, p. 2717, 1994. https://doi.org/10.1103/physrevlett.72.2717.Search in Google Scholar

[3] B. J. Hiley and G. S. Joice, “The Ising model with long-range interactions,” Proc. Phys. Soc., vol. 85, p. 493, 1965. https://doi.org/10.1088/0370-1328/85/3/310.Search in Google Scholar

[4] G. Kotliar, P. W. Anderson, and D. L. Stein, “One-dimensional spin-glass model with long-range random interactions,” Phys. Rev. B, vol. 27, p. 602, 1983. https://doi.org/10.1103/physrevb.27.602.Search in Google Scholar

[5] N. A. Bahcall and S. P. Oh, “The peculiar velocity function of galaxy clusters,” Astrophys. J., vol. 462, p. L49, 1996. https://doi.org/10.1086/310041.Search in Google Scholar

[6] M. Bacha, M. Tribeche, and P. K. Shukla, “Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons,” Phys. Rev. E, vol. 85, p. 056413, 2012. https://doi.org/10.1103/physreve.85.056413.Search in Google Scholar PubMed

[7] M. Amina, S. A. Ema, and A. A. Mamun, “Nonplanar electrostatic shock waves in an opposite polarity dust plasma with nonextensive electrons and ions,” Pramana - J. Phys., vol. 88, p. 81, 2017. https://doi.org/10.1007/s12043-017-1409-9.Search in Google Scholar

[8] S. Yasmin, M. Asaduzzaman, and A. A. Mamun, “Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma,” Phys. Plasmas, vol. 19, p. 103703, 2012. https://doi.org/10.1063/1.4754529.Search in Google Scholar

[9] A. Nazari-Golshan, “Investigation of nonextensivity trapped electrons effect on the solitary ion-acoustic wave using fractional Schamel equation,” Phys. Plasmas, vol. 23, p. 082109, 2016. https://doi.org/10.1063/1.4960668.Search in Google Scholar

[10] M. Bacha and M. Tribeche, “Nonlinear dust-ion acoustic waves in a dusty plasma with non-extensive electrons and ions,” J. Plasma Phys., vol. 79, pp. 569–576, 2013. https://doi.org/10.1017/s0022377812000979.Search in Google Scholar

[11] A. Saha and P. Chatterjee, “Solitonic, periodic, quasiperiodic and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas,” Eur. Phys. J. D, vol. 69, p. 203, 2015. https://doi.org/10.1140/epjd/e2015-60115-7.Search in Google Scholar

[12] M. S. Alam, M. G. Hafez, and M. H. Ali, “Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes,” Phys. Plasmas, vol. 24, p. 072901, 2017. https://doi.org/10.1063/1.4990065.Search in Google Scholar

[13] Z. Z. Li, J. F. Han, D. N. Gao, and W. S. Duan, “Small amplitude double layers in an electronegative dusty plasma with q -distributed electrons,” Chin. Phys. B, vol. 27, p. 105204, 2018. https://doi.org/10.1088/1674-1056/27/10/105204.Search in Google Scholar

[14] W. F. El-Taibany, N. A. Zedan, and R. M. Taha, “Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons,” Astrophys. Space Sci., vol. 363, p. 129, 2018. https://doi.org/10.1007/s10509-018-3348-4.Search in Google Scholar

[15] H. R. Miller and P. J. Witta, Active Galactic Nuclei, Berlin, Springer-Verlag, 1987.Search in Google Scholar

[16] M. L. Burns, Positron-Electron Pairs in Astrophysics, Melville, NY, American Institute of Physics, 1983.Search in Google Scholar

[17] F. C. Michel, Theory of Neutron Star Magnetosphere, Chicago, Chicago University Press, 1991.Search in Google Scholar

[18] S. Weinberg, Gravitation and Cosmology, New York, Wiley, 1972.Search in Google Scholar

[19] M. G. Hafez, M. R. Talukder, and M. Hossain Ali, “Nonlinear propagation of weakly relativistic ion-acoustic waves in electron-positron-ion plasma,” Pramana - J. Phys., vol. 87, p. 70, 2016. https://doi.org/10.1007/s12043-016-1275-x.Search in Google Scholar

[20] A. Mugemana, I. J. Lazarus, and S. Moolla, “Linear electrostatic waves in a three-component electron-positron-ion plasma,” Phys. Plasmas, vol. 21, p. 122119, 2014. https://doi.org/10.1063/1.4905067.Search in Google Scholar

[21] A. Mushtaq, “Ion acoustic solitary waves in magneto-rotating plasmas,” J. Phys. A: Math. Theor., vol. 43, p. 315501, 2010. https://doi.org/10.1088/1751-8113/43/31/315501.Search in Google Scholar

[22] A. Rafat, M. M. Rahman, M. S. Alam, and A. A. Mamun, “Cylindrical and spherical electron-acoustic shock waves in electron-positron-ion plasmas with nonextensive electrons and positrons,” Commun. Theor. Phys., vol. 63, pp. 243–248, 2015. https://doi.org/10.1088/0253-6102/63/2/18.Search in Google Scholar

[23] M. Ferdousi, S. Yasmin, S. Ashraf, and A. A. Mamun, “Ion-acoustic shock waves in nonextensive electron-positron-ion plasma,” Chin. Phys. Lett., vol. 32, p. 015201, 2015. https://doi.org/10.1088/0256-307x/32/1/015201.Search in Google Scholar

[24] T. K. Maji, M. K. Ghorui, A. Saha, and P. Chatterjee, “Oblique interaction of ion-acoustic solitary waves in e-p-i plasmas,” Braz. J. Phys., vol. 47, no. 3, pp. 295–301, 2017. https://doi.org/10.1007/s13538-017-0496-x.Search in Google Scholar

[25] A. Saha, N. Pal, and P. Chatterjee, “Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons,” Phys. Plasmas, vol. 21, p. 102101, 2014. https://doi.org/10.1063/1.4896715.Search in Google Scholar

[26] C. T. D. Tchaho, H. M. Omanda, and D. B. Belobo, “Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation,” Eur. Phys. J. Plus, vol. 133, p. 387, 2018. https://doi.org/10.1140/epjp/i2018-12218-4.Search in Google Scholar

[27] S. S. Nourazar, A. Nazari-Golshan, and F. Soleymanpour, “On the expedient solution of the magneto-hydrodynamic Jeffery-Hamel flow of Casson fluid,” Sci. Rep., vol. 8, p. 16358, 2018. https://doi.org/10.1038/s41598-018-34778-w.Search in Google Scholar PubMed PubMed Central

[28] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Boston, Kluwer, 1994.10.1007/978-94-015-8289-6Search in Google Scholar

[29] S. S. Nourazar, A. Nazari-Golshan, A. Yildirim, and M. Nourazar, “On the hybrid of Fourier transform and Adomian decomposition method for the solution of nonlinear Cauchy problems of the reaction-diffusion equation,” Z. Naturforsch. A, vol. 67, p. 355, 2012. https://doi.org/10.5560/zna.2012-0025.Search in Google Scholar

[30] A. Nazari-Golshan and S. S. Nourazar, “Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation,” Phys. Plasmas, vol. 20, p. 103701, 2013. https://doi.org/10.1063/1.4823997.Search in Google Scholar

[31] A. Nazari-Golshan, S. S. Nourazar, H. Ghafoori-Fard, A. Yildirim, and A. Campo, “A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane-Emden equations,” Appl. Math. Lett., vol. 26, p. 1018, 2013. https://doi.org/10.1016/j.aml.2013.05.010.Search in Google Scholar

[32] S. S. Nourazar and A. Nazari-Golshan, “A new modification to homotopy perturbation method combined with Fourier transform for solving nonlinear Cauchy reaction diffusion equation,” Indian J. Phys., vol. 89, p. 61, 2015. https://doi.org/10.1007/s12648-014-0511-9.Search in Google Scholar

[33] A. Nazari-Golshan, “Investigation of cylindrical shock waves in dusty plasma,” Indian J. Phys., vol. 92, pp. 1643–1650, 2018. https://doi.org/10.1007/s12648-018-1260-y.Search in Google Scholar

[34] Z. Zhang, “Veranstaltungskalender,” Turk. J. Phys., vol. 32, p. 235, 2008. https://doi.org/10.1007/s11623-008-0039-2.Search in Google Scholar

[35] Z. Zhang, Y. Li, Z. Liu, and X. Miao, “New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity via modified trigonometric function series method,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 8, p. 3097, 2011. https://doi.org/10.1016/j.cnsns.2010.12.010.Search in Google Scholar

[36] Z. Zhang, Z. Liu, X. Miao, and Y. Chen, “Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Phys. Lett., vol. 375, p. 1275, 2011. https://doi.org/10.1016/j.physleta.2010.11.070.Search in Google Scholar

[37] Z. Zhang, X. Gan, and D. Yu, “Bifurcation behaviour of the travelling wave solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity,” Z. Naturforsch. A, vol. 66, p. 721, 2011. https://doi.org/10.5560/zna.2011-0065.Search in Google Scholar

[38] Z. Zhang, F. Xia, and X. Li, “Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations,” Pramana, vol. 80, no. 1, p. 41, 2013. https://doi.org/10.1007/s12043-012-0357-7.Search in Google Scholar

[39] X. Miao and Z. Zhang, “The modified -expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 11, p. 4259, 2011. https://doi.org/10.1016/j.cnsns.2011.03.032.Search in Google Scholar

[40] Z. Zhang, J. Huang, J. Zhong, et al.., “The extended (G′/G)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Pramana, vol. 82, no. 6, p. 1011, 2014. https://doi.org/10.1007/s12043-014-0747-0.Search in Google Scholar

[41] Z. Zhang and J. Wu, “The I–V zero-drift mechanism of quantum effect photodetector,” Opt. Quant. Electron., vol. 49, p. 1, 2017. https://doi.org/10.1007/s11082-016-0869-3.Search in Google Scholar

[42] Z. Zhang, J. Huang, J. Zhong, et al.., “Charge‐transfer complex coupled between polymer and H‐aggregate molecular crystals,” Rom. Journ. Phys., vol. 58, no. 7, p. 749, 2013. https://doi.org/10.1002/polb.23272.Search in Google Scholar

[43] Z. Zhang, “Jacobi elliptic function expansion method for the modified Korteweg-de Vries-Zakharov-Kuznetsov and the Hirota equations,” Rom. Journ. Phys., vol. 60, p. 1384, 2015.Search in Google Scholar

[44] Z. Zhang, X. Gan, D. Yu, Y. Zhang, and X. Li, “A note on exact traveling wave solutions of the perturbed nonlinear schrödinger’s equation with Kerr law nonlinearity,” Commun. Theor. Phys., vol. 57, p. 764, 2012. https://doi.org/10.1088/0253-6102/57/5/05.Search in Google Scholar

[45] Z. Zhang, “Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1+1)-dimension, part I-without local inductance and dissipation effect,” Turk. J. Phys., vol. 37, p. 259, 2013.10.3906/fiz-1205-13Search in Google Scholar

[46] Z. Zhang, Y. Zhang, X. Gan, and D. Yu, “A note on exact travelling wave solutions for the Klein-Gordon- Zakharov equations,” Z. Naturforsch. A, vol. 67, p. 167, 2012. https://doi.org/10.5560/zna.2012-0007.Search in Google Scholar

[47] Z. Zhang, Z. Liu, X. Miao, and Y. Chen, “New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity,” Appl. Math. Comput., vol. 216, p. 3064, 2010. https://doi.org/10.1016/j.amc.2010.04.026.Search in Google Scholar

[48] Z. Zhang, J. Huang, J. Zhong, et al.., “First integral method and exact solutions to nonlinear partial differential equations arising in mathematical physics,” Rom. Journ. Phys., vol. 65, no. 4, p. 1155, 2013.10.1186/1687-2770-2013-117Search in Google Scholar

[49] J. H. He, “Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics,” Int. J. Turbo Jet Engines, vol. 14, pp. 23–28, 1997. https://doi.org/10.1515/TJJ.1997.14.1.23.Search in Google Scholar

[50] O. P. Agrawal, “Formulation of Euler-Lagrange equations for fractional variational problems,” J. Math. Anal. Appl., vol. 272, p. 368, 2002. https://doi.org/10.1016/s0022-247x(02)00180-4.Search in Google Scholar

[51] O. P. Agrawal, “A general formulation and solution scheme for fractional optimal control problems,” Nonlinear Dynam., vol. 38, p. 323, 2004. https://doi.org/10.1007/s11071-004-3764-6.Search in Google Scholar

[52] A. Nazari-Golshan, “Derivation and solution of space fractional modified Korteweg de Vries equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 79, p. 104904, 2019. https://doi.org/10.1016/j.cnsns.2019.104904.Search in Google Scholar

[53] A. Nazari-Golshan, “Fractional generalized Kuramoto-Sivashinsky equation: formulation and solution,” Eur. Phys. J. Plus, vol. 134, p. 565, 2019. https://doi.org/10.1140/epjp/i2019-12948-7.Search in Google Scholar

[54] L. A. Gougam and M. Tribeche, “Weak ion-acoustic double layers in a plasma with a q-nonextensive electron velocity distribution,” Astrophys. Space Sci., vol. 331, p. 181, 2011. https://doi.org/10.1007/s10509-010-0447-2.Search in Google Scholar

[55] H. Schamel, “A modified Korteweg-de Vries equation for ion acoustic wavess due to resonant electrons,” J. Plasma Phys., vol. 9, p. 377, 1973. https://doi.org/10.1017/s002237780000756x.Search in Google Scholar

[56] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, NewYork, Gordon & Breach, 1998.Search in Google Scholar

[57] I. Podlubny, Fractional Differential Equations, New York, Academic Press, 1999.Search in Google Scholar

Received: 2021-01-16
Revised: 2021-07-05
Accepted: 2021-08-03
Published Online: 2021-08-23
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0012/html
Scroll to top button