Abstract
At the acoustic speed, we have investigated the existence of ion-acoustic solitary structures including double layers and supersolitons in a collisionless magnetized plasma consisting of negatively charged static dust grains, adiabatic warm ions, and nonthermal electrons. At the acoustic speed, for negative polarity, the system supports solitons, double layers, supersoliton structures after the formation of double layer, supersoliton structures without the formation of double layer, solitons after the formation of double layer whereas the system supports solitons and supersolitons without the formation of double layer for the case of positive polarity. But it is not possible to get the coexistence of solitary structures (including double layers and supersolitons) of opposite polarities. For negative polarity, we have observed an important transformation viz., soliton before the formation of double layer → double layer → supersoliton → soliton after the formation of double layer whereas for both positive and negative polarities, we have observed the transformation from solitons to supersolitons without the formation of double layer. There does not exist any negative (positive) potential solitary structures within 0 < μ < μ c (μ c < μ < 1) and the amplitude of the positive (negative) potential solitary structure decreases for increasing (decreasing) μ and the solitary structures of both polarities collapse at μ = μ c, where μ c is a critical value of μ, the ratio of the unperturbed number density of electrons to that of ions. Similarly there exists a critical value β e2 of the nonthermal parameter β e such that the solitons of both polarities collapse at β e = β e2.
Acknowledgments
The authors are grateful to all the reviewers for their constructive comments, without which this paper could not have been written in its present form.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Appendix A: Derivation of Eq. (29)
From Eq. (28), we get
Substituting this expression of −M + u in Eq. (26), we get the following equation
Equation (65) can be written as
Substituting the expression of H as given by (23) into Eq. (66), we get the following equation
From Eq. (12), we see that n i is a function of ϕ and consequently we have the following results:
Using the above results, Eq. (67) can be written in the following form:
From this equation, one can easily get the following equation:
The above equation is Eq. (29).
Appendix B: Derivation of Eq. (45)
Differentiating Eq. (44) with respect to ϕ, we get:
where we have used the identity
Appendix C: Derivation of Eq. (46)
Differentiating Eq. (70) with respect to ϕ, we get:
Substituting the expression of V′(M, ϕ) as given by (70) into Eq. (71), we get the following equation
The above equation is Eq. (46).
Appendix D: Derivation of Eq. (47)
From Eqs. (12), (23), (31), (35), and (38), we get the following results:
Using the above results, from Eqs. (44)–(46), we get the following results:
The last equation is Eq. (47).
References
[1] P. Shukla and M. Yu, “Exact solitary ion acoustic waves in a magnetoplasma,” J. Math. Phys., vol. 19, p. 2506, 1978. https://doi.org/10.1063/1.523632.Suche in Google Scholar
[2] A. Hasegawa and T. Sato, “Existence of a negative potential solitary-wave structure and formation of a double layer,” Phys. Fluids, vol. 25, p. 632, 1982. https://doi.org/10.1063/1.863785.Suche in Google Scholar
[3] S. Baboolal, R. Bharuthram, and M. Hellberg, “Arbitrary-amplitude rarefactive ion-acoustic double layers in warm multi-fluid plasmas,” J. Plasma Phys., vol. 40, p. 163, 1988. https://doi.org/10.1017/s0022377800013180.Suche in Google Scholar
[4] R. Bharuthram and P. K. Shukla, “Large amplitude ion-acoustic solitons in a dusty plasma,” Planet. Space Sci., vol. 40, p. 973, 1992. https://doi.org/10.1016/0032-0633(92)90137-d.Suche in Google Scholar
[5] R. A. Cairns, A. A. Mamum, R. Bingham, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, p. 2709, 1995. https://doi.org/10.1029/95gl02781.Suche in Google Scholar
[6] R. A. Cairns, R. Bingham, R. O. Dendy, C. M. C. Nairn, P. K. Shukla, and A. A. Mamun, “Ion sound solitary waves with density depressions,” J. Phys. IV, vol. 5, p. C6, 1995. https://doi.org/10.1051/jp4:1995608.10.1051/jp4:1995608Suche in Google Scholar
[7] S. Popel, M. Yu, and V. Tsytovich, “Shock waves in plasmas containing variable‐charge impurities,” Phys. Plasmas, vol. 3, p. 4313, 1996. https://doi.org/10.1063/1.872048.Suche in Google Scholar
[8] A. Mamun, R. Cairns, and P. Shukla, “Solitary potentials in dusty plasmas,” Phys. Plasmas, vol. 3, p. 702, 1996. https://doi.org/10.1063/1.871905.Suche in Google Scholar
[9] A. A. Mamun, “Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas,” Phys. Rev. E, vol. 55, p. 1852, 1997. https://doi.org/10.1103/physreve.55.1852.Suche in Google Scholar
[10] T. S. Gill, P. Bala, H. Kaur, N. S. Saini, S. Bansal, and J. Kaur, “Ion-acoustic solitons and double-layers in a plasma consisting of positive and negative ions with non-thermal electrons,” Eur. Phys. J. D, vol. 31, p. 91, 2004. https://doi.org/10.1140/epjd/e2004-00121-4.Suche in Google Scholar
[11] S. Maharaj, S. Pillay, R. Bharuthram, S. Singh, and G. Lakhina, “The effect of dust grain temperature and dust streaming on electrostatic solitary structures in a non-thermal plasma,” Phys. Scripta, vol. 2004, p. 135, 2004. https://doi.org/10.1088/0031-8949/2004/t113/034.Suche in Google Scholar
[12] C. R. Choi, C.-M. Ryu, N. C. Lee, and D.-Y. Lee, “Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field,” Phys. Plasmas, vol. 12, 2005, Art no. 022304. https://doi.org/10.1063/1.1843820.Suche in Google Scholar
[13] C. R. Choi, C.-M. Ryu, N. C. Lee, D.-Y. Lee, and Y. Kim, “Ion thermal pressure effects on dust ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field,” Phys. Plasmas, vol. 12, 2005, Art no. 072301. https://doi.org/10.1063/1.1943367.Suche in Google Scholar
[14] S. Maitra and R. Roychoudhury, “Obliquely propagating ion acoustic solitary waves in a dusty plasma in the presence of an external magnetic field,” Phys. Plasmas, vol. 13, p. 112302, 2006. https://doi.org/10.1063/1.2364140.Suche in Google Scholar
[15] M. Marklund, B. Eliasson, and P. K. Shukla, “Magnetosonic solitons in a fermionic quantum plasma,” Phys. Rev. E, vol. 76, 2007, Art no. 067401. https://doi.org/10.1103/PhysRevE.76.067401.10.1103/PhysRevE.76.067401Suche in Google Scholar PubMed
[16] S. Ali, W. M. Moslem, P. K. Shukla, and R. Schlickeiser, “Linear and nonlinear ion-acoustic waves in an unmagnetized electron–positron–ion quantum plasma,” Phys. Plasmas, vol. 14, 2007, Art no. 082307. https://doi.org/10.1063/1.2750649.Suche in Google Scholar
[17] C. R. Choi, C.-M. Ryu, D.-Y. Lee, N. C. Lee, and Y.-H. Kim, “Dust ion acoustic solitary waves in a magnetized dusty plasma with anisotropic ion pressure,” Phys. Lett. A, vol. 364, p. 297, 2007. https://doi.org/10.1016/j.physleta.2006.12.014.Suche in Google Scholar
[18] W. F. El-Taibany and M. Wadati, “Sagdeev potential analysis for positively charged dust grains in nonthermal dusty plasma near Mars,” Phys. Plasmas, vol. 14, p. 103703, 2007. https://doi.org/10.1063/1.2784764.Suche in Google Scholar
[19] S. Ghosh and R. Bharuthram, “Ion acoustic solitons and double layers in electron–positron–ion plasmas with dust particulates,” Astrophys. Space Sci., vol. 314, p. 121, 2008. https://doi.org/10.1007/s10509-008-9748-0.Suche in Google Scholar
[20] P. Chatterjee and K. Roy, “Large amplitude solitary waves in a four-component dusty plasma with nonthermal ions,” Z. Naturforsch. A, vol. 63, p. 393, 2008. https://doi.org/10.1515/zna-2008-7-802.Suche in Google Scholar
[21] M. Djebli and H. Marif, “Large amplitude double layers in a positively charged dusty plasma with nonthermal electrons,” Phys. Plasmas, vol. 16, 2009, Art no. 063708. https://doi.org/10.1063/1.3152324.Suche in Google Scholar
[22] H. R. Pakzad, “Ion acoustic solitary waves in plasma with nonthermal electron and positron,” Phys. Lett. A, vol. 373, p. 847, 2009. https://doi.org/10.1016/j.physleta.2008.12.066.Suche in Google Scholar
[23] E. I. El-Awady, S. A. El-Tantawy, W. M. Moslem, and P. K. Shukla, “Electron-positron-ion plasma with kappa distribution: Ion acoustic soliton propagation,” Phys. Lett. A, vol. 374, p. 3216, 2010. https://doi.org/10.1016/j.physleta.2010.05.053.Suche in Google Scholar
[24] M. Tribeche and L. Djebarni, “Electron-acoustic solitary waves in a nonextensive plasma,” Phys. Plasmas, vol. 17, p. 124502, 2010. https://doi.org/10.1063/1.3522777.Suche in Google Scholar
[25] H. R. Pakzad and M. Tribeche, “Electron-acoustic solitons in plasma with nonthermal electrons,” Astrophys. Space Sci., vol. 330, p. 95, 2010. https://doi.org/10.1007/s10509-010-0367-1.Suche in Google Scholar
[26] M. Tribeche and A. Merriche, “Nonextensive dust-acoustic solitary waves,” Phys. Plasmas, vol. 18, 2011, Art no. 034502. https://doi.org/10.1063/1.3561789.Suche in Google Scholar
[27] O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Low frequency solitons and double layers in a magnetized plasma with two temperature electrons,” Phys. Plasmas, vol. 19, p. 122308, 2012. https://doi.org/10.1063/1.4771574.Suche in Google Scholar
[28] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic supersolitons in plasma,” Plasma Phys. Rep., vol. 38, p. 909, 2012. https://doi.org/10.1134/s1063780x12100054.Suche in Google Scholar
[29] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic super solitary waves in dusty multispecies plasmas,” IEEE Trans. Plasma Sci., vol. 40, p. 1429, 2012. https://doi.org/10.1109/tps.2012.2189026.Suche in Google Scholar
[30] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic supersolitons in plasma,” Plasma Phys. Rep., vol. 38, p. 909, 2012. https://doi.org/10.1134/s1063780x12100054.Suche in Google Scholar
[31] A. Das, A. Bandyopadhyay, and K. P. Das, “Dust ion-acoustic solitary structures in non-thermal dusty plasma,” J. Plasma Phys., vol. 78, p. 149, 2012. https://doi.org/10.1017/s002237781100050x.Suche in Google Scholar
[32] A. E. Dubinov and D. Y. Kolotkov, “Interpretation of ion-acoustic solitons of unusual form in experiments in SF6-Ar plasma,” High Energy Chem., vol. 46, p. 349, 2012. https://doi.org/10.1134/s0018143912060033.Suche in Google Scholar
[33] S. V. Singh, S. Devanandhan, G. S. Lakhina, and R. Bharuthram, “Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons,” Phys. Plasmas, vol. 20, 2013, Art no. 012306. https://doi.org/10.1063/1.4776710.Suche in Google Scholar
[34] M. A. Hellberg, T. K. Baluku, F. Verheest, and I. Kourakis, “Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions,” J. Plasma Phys., vol. 79, p. 1039, 2013. https://doi.org/10.1017/s0022377813001153.Suche in Google Scholar
[35] O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons,” Phys. Plasmas, vol. 21, 2014, Art no. 082304. https://doi.org/10.1063/1.4891877.Suche in Google Scholar
[36] S. V. Singh and G. S. Lakhina, “Ion-acoustic supersolitons in the presence of non-thermal electrons,” Commun. Nonlinear Sci. Numer. Simulat., vol. 23, p. 274, 2015. https://doi.org/10.1016/j.cnsns.2014.11.017.Suche in Google Scholar
[37] A. Paul and A. Bandyopadhyay, “Dust ion acoustic solitary structures in presence of nonthermal electrons and isothermal positrons,” Astrophys. Space Sci., vol. 361, p. 172, 2016. https://doi.org/10.1007/s10509-016-2758-4.Suche in Google Scholar
[38] O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma,” Phys. Plasmas, vol. 23, 2016, Art no. 032309. https://doi.org/10.1063/1.4944669.Suche in Google Scholar
[39] A. Paul, A. Das, and A. Bandyopadhyay, “Dust ion acoustic solitary structures in the presence of isothermal positrons,” Plasma Phys. Rep., vol. 43, p. 218, 2017. https://doi.org/10.1134/s1063780x1702012x.Suche in Google Scholar
[40] A. Paul, A. Bandyopadhyay, and K. P. Das, “Dust ion acoustic solitary structures in presence of nonthermally distributed electrons and positrons,” Phys. Plasmas, vol. 24, 2017, Art no. 013707. https://doi.org/10.1063/1.4975089.Suche in Google Scholar
[41] A. Paul and A. Bandyopadhyay, “Ion acoustic solitons, double layers and supersolitons in a collisionless unmagnetized plasma consisting of nonthermal electrons and isothermal positrons,” Indian J. Phys., vol. 92, p. 1187, 2018. https://doi.org/10.1007/s12648-018-1180-x.Suche in Google Scholar
[42] D. Debnath, A. Bandyopadhyay, and K. P. Das, “Ion acoustic solitary structures in a magnetized nonthermal dusty plasma,” Phys. Plasmas, vol. 25, 2018, Art no. 033704. https://doi.org/10.1063/1.5021127.Suche in Google Scholar
[43] D. Debnath and A. Bandyopadhyay, “Combined effect of Kappa and Cairns distributed electrons on ion acoustic solitary structures in a collisionless magnetized dusty plasma,” Astrophys. Space Sci., vol. 365, Art no. 72, 2020. https://doi.org/10.1007/s10509-020-03786-6.Suche in Google Scholar
[44] S. Dalui, S. Sardar, and A. Bandyopadhyay, “Arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of non-thermal and isothermal electrons,” Z. Naturforsch. A, vol. 76, pp. 455–468, 2021. https://doi.org/10.1515/zna-2020-0296.Suche in Google Scholar
[45] F. Verheest and M. A. Hellberg, “Nonthermal effects on existence domains for dust-acoustic solitary structures in plasmas with two-temperature ions,” Phys. Plasmas, vol. 17, 2010, Art no. 023701. https://doi.org/10.1063/1.3299356.Suche in Google Scholar
[46] T. Baluku, M. Hellberg, I. Kourakis, and N. Saini, “Dust ion acoustic solitons in a plasma with kappa-distributed electrons,” Phys. Plasmas, vol. 17, 2010, Art no. 053702. https://doi.org/10.1063/1.3400229.Suche in Google Scholar
[47] T. K. Baluku, M. A. Hellberg, and F. Verheest, “New light on ion acoustic solitary waves in a plasma with two-temperature electrons,” Europhys. Lett., vol. 91, p. 15001, 2010. https://doi.org/10.1209/0295-5075/91/15001.Suche in Google Scholar
[48] A. Das, A. Bandyopadhyay, and K. P. Das, “An analytical study on the existence of solitary structure at M = Mc,” J. Plasma Phys., vol. 78, p. 565, 2012. https://doi.org/10.1017/s0022377812000372.Suche in Google Scholar
[49] F. Verheest and M. A. Hellberg, “Electrostatic supersolitons and double layers at the acoustic speed,” Phys. Plasmas, vol. 22, 2015, Art no. 012301. https://doi.org/10.1063/1.4905518.Suche in Google Scholar
[50] A. Paul, A. Bandyopadhyay, and K. P. Das, “Dust ion acoustic solitary structures at the acoustic speed in the presence of nonthermal electrons and isothermal positrons,” Plasma Phys. Rep., vol. 45, p. 466, 2019. https://doi.org/10.1134/s1063780x19050088.Suche in Google Scholar
[51] J. H. Binsack, Ph.D. Thesis, Massachusetts Institute of Technology, 1966.Suche in Google Scholar
[52] S. Olbert, “Summary of Experimental Results from M.I.T. Detector on IMP-1,” in Physics of the Magnetosphere, vol. 10, Dordrecht, Springer, 1968, p. 641.10.1007/978-94-010-3467-8_23Suche in Google Scholar
[53] V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res., vol. 73, p. 2839, 1968. https://doi.org/10.1029/ja073i009p02839.Suche in Google Scholar
[54] F. Verheest and S. Pillay, “Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas,” Phys. Plasmas, vol. 15, 2008, Art no. 013703. https://doi.org/10.1063/1.2831025.Suche in Google Scholar
[55] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, p. 1827, 1994. https://doi.org/10.1029/94gl00886.Suche in Google Scholar
[56] R. Boström, G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen, and P. Kintner, “Characteristics of Solitary Waves and Weak Double Layers in the Magnetospheric Plasma,” Phys. Rev. Lett., vol. 61, p. 82, 1988. https://doi.org/10.1103/physrevlett.61.82.Suche in Google Scholar PubMed
[57] R. Boström, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, p. 756, 1992. https://doi.org/10.1109/27.199524.Suche in Google Scholar
[58] R. E. Ergun, C. W. Carlson, J. P. McFadden, et al.., “FAST satellite observations of electric field structures in the auroral zone,” Geophys. Res. Lett., vol. 25, p. 2025, 1998. https://doi.org/10.1029/98gl00635.Suche in Google Scholar
[59] R. E. Ergun, C. W. Carlson, J. P. McFadden, et al.., “FAST satellite wave observations in the AKR source region,” Geophys. Res. Lett., vol. 25, p. 2061, 1998. https://doi.org/10.1029/98gl00570.Suche in Google Scholar
[60] G. T. Delory, R. E. Ergun, C. W. Carlson, et al.., “FAST observations of electron distributions within AKR source regions,” Geophys. Res. Lett., vol. 25, p. 2069, 1998. https://doi.org/10.1029/98gl00705.Suche in Google Scholar
[61] R. Pottelette, R. E. Ergun, R. A. Treumann, et al.., “Modulated electron-acoustic waves in auroral density cavities: FAST observations,” Geophys. Res. Lett., vol. 26, p. 2629, 1999. https://doi.org/10.1029/1999gl900462.Suche in Google Scholar
[62] J. P. McFadden, C. W. Carlson, R. E. Ergun, et al., “FAST observations of ion solitary waves,” J. Geophys. Res., vol. 108, p. 8018, 2003. https://doi.org/10.1029/2002JA009485.Suche in Google Scholar
[63] H. Matsumoto, H. Kojima, T. Miyatake, et al.., “Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL,” Geophys. Res. Lett., vol. 21, p. 2915, 1994. https://doi.org/10.1029/94gl01284.Suche in Google Scholar
[64] J. R. Franz, P. M. Kintner, and J. S. Pickett, “POLAR observations of coherent electric field structures,” Geophys. Res. Lett., vol. 25, p. 1277, 1998. https://doi.org/10.1029/98gl50870.Suche in Google Scholar
[65] C. A. Cattell, J. Dombeck, J. R. Wygant, et al.., “Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone,” Geophys. Res. Lett., vol. 26, p. 425, 1999. https://doi.org/10.1029/1998gl900304.Suche in Google Scholar
[66] J. R. Asbridge, S. J. Bame, and I. B. Strong, “Outward flow of protons from the Earth’s bow shock,” J. Geophys. Res., vol. 73, p. 5777, 1968. https://doi.org/10.1029/ja073i017p05777.Suche in Google Scholar
[67] W. Feldman, R. Anderson, S. Bame, et al.., “Electron velocity distributions near the Earth’s bow shock,” J. Geophys. Res., vol. 88, p. 96, 1983. https://doi.org/10.1029/ja088ia01p00096.Suche in Google Scholar
[68] R. Lundin, A. Zakharov, R. Pellinen, et al.., “First measurements of the ionospheric plasma escape from Mars,” Nature, vol. 341, p. 609, 1989. https://doi.org/10.1038/341609a0.Suche in Google Scholar
[69] F. Verheest, Waves in Dusty Space Plasmas, Dordrecht, Netherlands, Kluwer Academic, 2000.10.1007/978-94-010-9945-5Suche in Google Scholar
[70] P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics, Bristol, UK, IoP, 2002.10.1887/075030653XSuche in Google Scholar
[71] Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, and H. Hayakawa, “Moon-related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms,” J. Geophys. Res., vol. 108, p. 1025, 2003. https://doi.org/10.1029/2002ja009366.Suche in Google Scholar
[72] R. Z. Sagdeev, Reviews of Plasma Physics, vol. 4, M. A. Leontovich, Ed., New York, NY, Consultant Bureau, 1966.Suche in Google Scholar
[73] H. Alfvén, Cosmic Plasma, vol. 82, Dordrecht, Holland, D. Reidel Publishing Company, 1981.10.1007/978-94-009-8374-8Suche in Google Scholar
[74] A. E. Dubinov and D. Y. Kolotkov, “Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas,” Rev. Mod. Plasma Phys., vol. 2, 2018, Art no. 2. https://doi.org/10.1007/s41614-018-0014-9.Suche in Google Scholar
[75] M. Temerin, K. Cerny, W. Lotko, and F. Mozer, “Observations of double layers and solitary waves in the auroral plasma,” Phys. Rev. Lett., vol. 48, p. 1175, 1982. https://doi.org/10.1103/physrevlett.48.1175.Suche in Google Scholar
[76] F. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, and J. Wygant, “New features of time domain electric-field structures in the auroral acceleration region,” Phys. Rev. Lett., vol. 79, p. 1281, 1997. https://doi.org/10.1103/physrevlett.79.1281.Suche in Google Scholar
[77] R. Ergun, C. Carlson, J. McFadden, et al.., “Debye-scale plasma structures associated with magnetic-field-aligned electric fields,” Phys. Rev. Lett., vol. 81, p. 826, 1998. https://doi.org/10.1103/physrevlett.81.826.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine