Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
-
Muhammad Shafiqul Islam
, Sabrina Rahman, Adil Sunny
, Md. Ashfaqul Haque , Md. Suruz Mianund Sheikh Rashel Al Ahmed
Abstract
The present work investigates a tin-based highly efficient perovskite solar cell (PSC) by a solar cell capacitance simulator in one dimension. Molybdenum disulfide is introduced as hole transport layer in the proposed solar cell device structure. The photovoltaic performances of the proposed solar cell are investigated by varying thickness, doping concentration, and bulk defect density of various layers. Furthermore, the operating temperature and the series and shunt resistances are analyzed systematically. A higher conversion efficiency of 25.99% is obtained at the absorber thickness of 2000 nm. The optimum doping density of 1017 cm−3 is estimated for the absorber, electron transport layer (ETL), and hole transport layer (HTL), respectively. The optimum thicknesses of 50 nm, 1000 nm, and 60 nm are also found for the titanium dioxide as ETL, methylammonium tin triiodide (CH3NH3SnI3) as absorber layer, and molybdenum disulfide as HTL, respectively. The efficiency of the proposed lead-free CH3NH3SnI3-based solar cell with the alternative molybdenum disulfide HTL is calculated to be 24.65% with open-circuit voltage of 0.89 V, short-circuit current density of 34.04 mA/cm2, and fill-factor of 81.46% for the optimum parameters of all layers. These findings would contribute to fabricate low-cost, non-toxic, stable, and durable lead-free PSCs for the next generation.
Acknowledgements
The authors would like to thank Dr. Marc Burgelman, University of Gent, Belgium, for providing the SCAPS 1-D simulation software.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors report no declarations of interest.
References
[1] A. V. Shah, H. Schade, M. Vanecek, et al.., “Thin-film silicon solar cell technology,” Prog. Photovoltaics Res. Appl., vol. 12, p. 113, 2004. https://doi.org/10.1002/pip.533.Suche in Google Scholar
[2] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, vol. 15, p. 16986, 2007. https://doi.org/10.1364/oe.15.016986.Suche in Google Scholar
[3] M. Taguchi, A. Yano, S. Tohoda, et al.., “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovolt., vol. 4, p. 96, 2014. https://doi.org/10.1109/jphotov.2013.2282737.Suche in Google Scholar
[4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chem. Rev., vol. 110, p. 6595, 2010. https://doi.org/10.1021/cr900356p.Suche in Google Scholar
[5] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater., vol. 4, p. 455, 2005. https://doi.org/10.1038/nmat1387.Suche in Google Scholar
[6] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett., vol. 8, p. 323, 2008. https://doi.org/10.1021/nl072838r.Suche in Google Scholar
[7] M. Grätzel, “Dye-Sensitized Solar Cells,” J. Photochem. Photobiol. C: Photochem. Rev., vol. 4, p. 145, 2003.10.1016/S1389-5567(03)00026-1Suche in Google Scholar
[8] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, p. 395, 2013. https://doi.org/10.1038/nature12509.Suche in Google Scholar PubMed
[9] H. Zhou, Q. Chen, G. Li, et al.., “Interface engineering of highly efficient perovskite solar cells,” Science, vol. 345, p. 542, 2014. https://doi.org/10.1126/science.1254050.Suche in Google Scholar PubMed
[10] M. A. Green, A. Ho-Baillie, and H. J. Snaith, “The emergence of perovskite solar cells,” Nat. Photonics, vol. 8, p. 506, 2014. https://doi.org/10.1038/nphoton.2014.134.Suche in Google Scholar
[11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, p. 6050, 2009. https://doi.org/10.1021/ja809598r.Suche in Google Scholar PubMed
[12] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, p. 4088, 2011. https://doi.org/10.1039/c1nr10867k.Suche in Google Scholar PubMed
[13] H.-S. Kim, C.-R. Lee, J.-H. Im, et al.., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Sci. Rep., vol. 2, p. 591, 2012. https://doi.org/10.1038/srep00591.Suche in Google Scholar PubMed PubMed Central
[14] J. Burschka, N. Pellet, S.-J. Moon, et al.., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, p. 316, 2013. https://doi.org/10.1038/nature12340.Suche in Google Scholar PubMed
[15] W. S. Yang, J. H. Noh, N. J. Jeon, et al.., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, p. 1234, 2015. https://doi.org/10.1126/science.aaa9272.Suche in Google Scholar PubMed
[16] A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater., vol. 15, p. 247, 2016. https://doi.org/10.1038/nmat4572.Suche in Google Scholar PubMed
[17] X. Jiang, F. Wang, Q. Wei, et al.., “Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design,” Nat. Commun., vol. 11, p. 1245, 2020. https://doi.org/10.1038/s41467-020-15078-2.Suche in Google Scholar PubMed PubMed Central
[18] C. Wang, F. Gu, Z. Zhao, et al.., “Self‐repairing tin‐based perovskite solar cells with a breakthrough efficiency over 11%,” Adv. Mater., vol. 32, p. 1907623, 2020. https://doi.org/10.1002/adma.201907623.Suche in Google Scholar PubMed
[19] K. Nishimura, M. A. Kamarudin, D. Hirotani, et al.., “Lead-free tin-halide perovskite solar cells with 13% efficiency,” Nanomater. Energy, vol. 74, p. 104858, 2020. https://doi.org/10.1016/j.nanoen.2020.104858.Suche in Google Scholar
[20] T. Wu, X. Liu, X. He, et al.., “Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base,” Sci. China Chem., vol. 63, p. 107, 2020. https://doi.org/10.1007/s11426-019-9653-8.Suche in Google Scholar
[21] C. C. Stoumpos, L. Frazer, D. J. Clark, et al.., “Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties,” J. Am. Chem. Soc., vol. 137, p. 6804, 2015. https://doi.org/10.1021/jacs.5b01025.Suche in Google Scholar PubMed
[22] M. Chen, M.-G. Ju, H. F. Garces, et al.., “Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation,” Nat. Commun., vol. 10, p. 16, 2019. https://doi.org/10.1038/s41467-018-07951-y.Suche in Google Scholar PubMed PubMed Central
[23] X.-G. Zhao, D. Yang, Y. Sun, et al.., “Cu-in halide perovskite solar absorbers,” J. Am. Chem. Soc., vol. 139, p. 6718, 2017. https://doi.org/10.1021/jacs.7b02120.Suche in Google Scholar PubMed
[24] D. Cortecchia, H. A. Dewi, J. Yin, et al.., “Lead-free MA2CuClxBr4-x hybrid perovskites,” Inorg. Chem., vol. 55, p. 1044, 2016. https://doi.org/10.1021/acs.inorgchem.5b01896.Suche in Google Scholar PubMed
[25] A. M. Elseman, A. E. Shalan, S. Sajid, M. M. Rashad, A. M. Hassan, and M. Li, “Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view,” ACS Appl. Mater. Interfaces, vol. 10, p. 11699, 2018. https://doi.org/10.1021/acsami.8b00495.Suche in Google Scholar PubMed
[26] L. Xie, B. Chen, F. Zhang, et al.., “Highly luminescent and stable lead-free cesium copper halide perovskite powders for UV-pumped phosphor-converted light-emitting diodes,” Photon. Res., vol. 8, p. 768, 2020. https://doi.org/10.1364/prj.387707.Suche in Google Scholar
[27] K. M. Boopathi, P. Karuppuswamy, A. Singh, et al.., “Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites,” J. Mater. Chem. A, vol. 5, p. 20843, 2017. https://doi.org/10.1039/c7ta06679a.Suche in Google Scholar
[28] F. Jiang, D. Yang, Y. Jiang, et al.., “Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells,” J. Am. Chem. Soc., vol. 140, p. 1019, 2018. https://doi.org/10.1021/jacs.7b10739.Suche in Google Scholar PubMed
[29] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, “Bismuth based hybrid perovskites A3Bi2I9(A: methylammonium or cesium) for solar cell application,” Adv. Mater., vol. 27, p. 6806, 2015. https://doi.org/10.1002/adma.201501978.Suche in Google Scholar PubMed
[30] A. H. Slavney, T. Hu, A. M. Lindenberg, and H. I. Karunadasa, “A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications,” J. Am. Chem. Soc., vol. 138, p. 2138, 2016. https://doi.org/10.1021/jacs.5b13294.Suche in Google Scholar PubMed
[31] T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, “Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3 Bi2I9 for photovoltaic applications,” ACS Appl. Mater. Interfaces, vol. 8, p. 14542, 2016. https://doi.org/10.1021/acsami.6b02843.Suche in Google Scholar PubMed
[32] X. Liu, Y. Wang, T. Wu, et al.., “Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure,” Nat. Commun., vol. 11, p. 2678, 2020. https://doi.org/10.1038/s41467-020-16561-6.Suche in Google Scholar PubMed PubMed Central
[33] P. Roy, N. Kumar Sinha, and A. Khare, “An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: a numerical simulation approach,” Mater. Today: Proc., vol. 39, p. 2022, 2021. https://doi.org/10.1016/j.matpr.2020.09.281.Suche in Google Scholar
[34] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem., vol. 52, p. 9019, 2013. https://doi.org/10.1021/ic401215x.Suche in Google Scholar PubMed
[35] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, “Lead-free solid-state organic-inorganic halide perovskite solar cells,” Nat. Photonics, vol. 8, p. 489, 2014. https://doi.org/10.1038/nphoton.2014.82.Suche in Google Scholar
[36] N. K. Noel, S. D. Stranks, A. Abate, et al.., “Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,” Energy Environ. Sci., vol. 7, p. 3061, 2014. https://doi.org/10.1039/c4ee01076k.Suche in Google Scholar
[37] L.-J. Wu, Y.-Q. Zhao, C.-W. Chen, L.-Z. Wang, B. Liu, and M.-Q. Cai, “First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3 NH3 SnI3,” Chin. Phys. B, vol. 25, p. 107202, 2016. https://doi.org/10.1088/1674-1056/25/10/107202.Suche in Google Scholar
[38] I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, “All-solid-state dye-sensitized solar cells with high efficiency,” Nature, vol. 485, p. 486, 2012. https://doi.org/10.1038/nature11067.Suche in Google Scholar PubMed
[39] S. Shao, J. Liu, G. Portale, et al.., “Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency,” Adv. Energy Mater., vol. 8, p. 1702019, 2017. https://doi.org/10.1002/aenm.201702019.Suche in Google Scholar
[40] T.-B. Song, T. Yokoyama, S. Aramaki, and M. G. Kanatzidis, “Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive,” ACS Energy Lett., vol. 2, p. 897, 2017. https://doi.org/10.1021/acsenergylett.7b00171.Suche in Google Scholar
[41] S. J. Lee, S. S. Shin, Y. C. Kim, et al.., “Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex,” J. Am. Chem. Soc., vol. 138, p. 3974, 2016. https://doi.org/10.1021/jacs.6b00142.Suche in Google Scholar PubMed
[42] S. Das and V. Jayaraman, “SnO2: a comprehensive review on structures and gas sensors,” Prog. Mater. Sci., vol. 66, p. 112, 2014. https://doi.org/10.1016/j.pmatsci.2014.06.003.Suche in Google Scholar
[43] Z. Xiao, H. Lei, X. Zhang, Y. Zhou, H. Hosono, and T. Kamiya, “Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6,” Bull. Chem. Soc. Jpn., vol. 88, p. 1250, 2015. https://doi.org/10.1246/bcsj.20150110.Suche in Google Scholar
[44] Y. M. Lee, J. Park, B. D. Yu, S. Hong, M.-C. Jung, and M. Nakamura, “Surface instability of Sn-based hybrid perovskite thin film, CH3NH3SnI3: the origin of its material instability,” J. Phys. Chem. Lett., vol. 9, p. 2293, 2018. https://doi.org/10.1021/acs.jpclett.8b00494.Suche in Google Scholar PubMed
[45] S. Abdelaziz, A. Zekry, A. Shaker, and M. Abouelatta, “Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation,” Opt. Mater., vol. 101, p. 109738, 2020. https://doi.org/10.1016/j.optmat.2020.109738.Suche in Google Scholar
[46] Y. Takahashi, H. Hasegawa, Y. Takahashi, and T. Inabe, “Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor,” J. Solid State Chem., vol. 205, p. 39, 2013. https://doi.org/10.1016/j.jssc.2013.07.008.Suche in Google Scholar
[47] Q. Tai, J. Cao, T. Wang, and F. Yan, “Recent advances toward efficient and stable tin‐based perovskite solar cells,” EcoMat, vol. 1, p. 12004, 2019. https://doi.org/10.1002/eom2.12004.Suche in Google Scholar
[48] J. Xiang, K. Wang, B. Xiang, and X. Cui, “Sn2+-Stabilization in MASnI3 perovskites by superhalide incorporation,” J. Chem. Phys., vol. 148, p. 124111, 2018. https://doi.org/10.1063/1.5023737.Suche in Google Scholar PubMed
[49] J. T. Lin, Y. K. Hu, C. H. Hou, et al.., “Superior stability and emission quantum yield (23% ± 3%) of single‐layer 2D tin perovskite TEA 2 SnI 4 via thiocyanate passivation,” Small, vol. 16, p. 2000903, 2020. https://doi.org/10.1002/smll.202000903.Suche in Google Scholar PubMed
[50] H. Dixit, D. Punetha, and S. K. Pandey, “Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters,” Optik, vol. 179, p. 969, 2019. https://doi.org/10.1016/j.ijleo.2018.11.028.Suche in Google Scholar
[51] C. Devi and R. Mehra, “Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide),” J. Mater. Sci., vol. 54, p. 5615, 2019. https://doi.org/10.1007/s10853-018-03265-y.Suche in Google Scholar
[52] A. Kumar and S. Singh, “Numerical modeling of lead-free perovskite solar cell using inorganic charge transport materials,” Mater. Today: Proceedings, vol. 26, p. 2574, 2020. https://doi.org/10.1016/j.matpr.2020.02.545.Suche in Google Scholar
[53] H.-J. Du, W.-C. Wang, and J.-Z. Zhu, “Device simulation of lead-free CH3 NH3 SnI3 perovskite solar cells with high efficiency,” Chin. Phys. B, vol. 25, p. 108802, 2016. https://doi.org/10.1088/1674-1056/25/10/108802.Suche in Google Scholar
[54] S. Ahmed, J. Shaffer, J. Harris, et al.., “Simulation studies of non-toxic tin-based perovskites: critical insights into solar performance kinetics through comparison with standard lead-based devices,” Superlattice. Microst., vol. 130, p. 20, 2019. https://doi.org/10.1016/j.spmi.2019.04.017.Suche in Google Scholar
[55] A. B. Coulibaly, S. O. Oyedele, N. G. R. Kre, and B. Aka, “Comparative study of lead-free perovskite solar cells using different hole transporter materials,” Model. Numer. Simul. Mater. Sci., vol. 09, p. 97, 2019. https://doi.org/10.4236/mnsms.2019.94006.Suche in Google Scholar
[56] Y. Gan, X. Bi, Y. Liu, et al.., “Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator,” Energies, vol. 13, p. 5907, 2020. https://doi.org/10.3390/en13225907.Suche in Google Scholar
[57] G. Yang, H. Tao, P. Qin, W. Ke, and G. Fang, “Recent progress in electron transport layers for efficient perovskite solar cells,” J. Mater. Chem. A, vol. 4, p. 3970, 2016. https://doi.org/10.1039/c5ta09011c.Suche in Google Scholar
[58] M. F. Mohamad Noh, C. H. Teh, R. Daik, et al.., “The architecture of the electron transport layer for a perovskite solar cell,” J. Mater. Chem. C, vol. 6, p. 682, 2018. https://doi.org/10.1039/c7tc04649a.Suche in Google Scholar
[59] L. Badia, E. Mas-Marzá, R. S. Sánchez, E. M. Barea, J. Bisquert, and I. Mora-Seró, “New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability,” Apl. Mater., vol. 2, p. 081507, 2014. https://doi.org/10.1063/1.4890545.Suche in Google Scholar
[60] A. K. Jena, Y. Numata, M. Ikegami, and T. Miyasaka, “Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste,” J. Mater. Chem. A, vol. 6, p. 2219, 2018. https://doi.org/10.1039/c7ta07674f.Suche in Google Scholar
[61] D. Wang, N. K. Elumalai, M. A. Mahmud, et al.., “MoS2 incorporated hybrid hole transport layer for high performance and stable perovskite solar cells,” Synth. Met., vol. 246, p. 195, 2018. https://doi.org/10.1016/j.synthmet.2018.10.012.Suche in Google Scholar
[62] G. Kakavelakis, I. Paradisanos, B. Paci, et al.., “Extending the continuous operating lifetime of perovskite solar cells with a molybdenum disulfide hole extraction interlayer,” Adv. Energy Mater., vol. 8, p. 1702287, 2018. https://doi.org/10.1002/aenm.201702287.Suche in Google Scholar
[63] S. Kohnehpoushi, P. Nazari, B. A. Nejand, and M. Eskandari, “MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells,” Nanotechnology, vol. 29, p. 205201, 2018. https://doi.org/10.1088/1361-6528/aab1d4.Suche in Google Scholar PubMed
[64] R. Ray, A. S. Sarkar, and S. K. Pal, “Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid,” Sol. Energy, vol. 193, p. 95, 2019. https://doi.org/10.1016/j.solener.2019.09.055.Suche in Google Scholar
[65] M. Liang, A. Ali, A. Belaidi, et al.., “Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides,” npj 2D Mater. Appl., vol. 4, p. 40, 2020. https://doi.org/10.1038/s41699-020-00173-1.Suche in Google Scholar
[66] A. K. Baranwal, H. Kanda, N. Shibayama, and S. Ito, “Fabrication of fully non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact,” Sustainable Energy Fuels, vol. 2, p. 2778, 2018. https://doi.org/10.1039/c8se00450a.Suche in Google Scholar
[67] V. Ferguson, S. R. P. Silva, and W. Zhang, “Carbon materials in perovskite solar cells: prospects and future challenges,” Energy Environ. Mater., vol. 2, p. 107, 2019. https://doi.org/10.1002/eem2.12035.Suche in Google Scholar
[68] D. Bogachuk, S. Zouhair, K. Wojciechowski, et al.., “Low-temperature carbon-based electrodes in perovskite solar cells,” Energy Environ. Sci., vol. 13, p. 3880, 2020. https://doi.org/10.1039/d0ee02175j.Suche in Google Scholar
[69] M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., vol. 84, p. 5552, 2000. https://doi.org/10.1103/physrevlett.84.5552.Suche in Google Scholar PubMed
[70] T. Dürkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Lett., vol. 4, p. 35, 2004. https://doi.org/10.1021/nl034841q.Suche in Google Scholar
[71] K. I. Bolotin, K. J. Sikes, Z. Jiang, et al.., “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, p. 351, 2008. https://doi.org/10.1016/j.ssc.2008.02.024.Suche in Google Scholar
[72] A. A. Balandin, S. Ghosh, W. Bao, et al.., “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, p. 902, 2008. https://doi.org/10.1021/nl0731872.Suche in Google Scholar
[73] Z. Yang, J. Ren, Z. Zhang, et al.., “Recent advancement of nanostructured carbon for energy applications,” Chem. Rev., vol. 115, p. 5159, 2015. https://doi.org/10.1021/cr5006217.Suche in Google Scholar
[74] Z. Wu, T. Song, and B. Sun, “Carbon-based materials used for perovskite solar cells,” Chem. Nano. Mat., vol. 3, p. 75, 2017. https://doi.org/10.1016/s2211-2855(17)30333-6.Suche in Google Scholar
[75] M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, vols 361-362, p. 527, 2000. https://doi.org/10.1016/s0040-6090(99)00825-1.Suche in Google Scholar
[76] K. Decock, P. Zabierowski, and M. Burgelman, “Modeling metastabilities in chalcopyrite-based thin film solar cells,” J. Appl. Phys., vol. 111, p. 043703, 2012. https://doi.org/10.1063/1.3686651.Suche in Google Scholar
[77] M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS Manual (Version: 3.3.07), Belgium, Department of Electronics and Information Systems, University of Gent. [accessed: January, 2021].Suche in Google Scholar
[78] Y. H. Khattak, F. Baig, H. Toura, S. Beg, and B. M. Soucase, “CZTSe kesterite as an alternative hole transport layer for MASnI3 perovskite solar cells,” J. Electron. Mater., vol. 48, p. 5723, 2019. https://doi.org/10.1007/s11664-019-07374-5.Suche in Google Scholar
[79] F. Baig, Y. H. Khattak, S. Beg, and B. M. Soucase, “Numerical analysis of a novel CNT/Cu2O/Sb2Se3/In2S3/ITO antimony selenide solar cell,” Optik, vol. 197, p. 163107, 2019. https://doi.org/10.1016/j.ijleo.2019.163107.Suche in Google Scholar
[80] I. Gharibshahian, A. A. Orouji, and S. Sharbati, “Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization,” Sol. Energy Mater. Sol. Cell., vol. 212, p. 110581, 2020. https://doi.org/10.1016/j.solmat.2020.110581.Suche in Google Scholar
[81] J. Huang, K. Lee, and Y. Tseng, “Analysis of the high conversion efficiencies β-FeSi2 and BaSi2 n-i-p thin film solar cells,” J. Nanomater., vol. 2014, p. 238291, 2014. https://doi.org/10.1155/2014/238291.Suche in Google Scholar
[82] T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(in, Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Appl. Phys., vol. 41, p. L165, 2002. https://doi.org/10.1143/jjap.41.l165.Suche in Google Scholar
[83] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys., vol. 48, p. 4729, 1977. https://doi.org/10.1063/1.323539.Suche in Google Scholar
[84] A. Husainat, W. Ali, P. Cofie, J. Attia, and J. Fuller, “Simulation and analysis of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cell with Au contact using SCAPS 1D simulator,” Acad. J. Poly. Sci., vol. 7, p. 33, 2019. https://doi.org/10.11648/j.ajop.20190702.12.Suche in Google Scholar
[85] S. Vallisree, R. Thangavel, and T. R. Lenka, “Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device,” J. Mater. Sci. Mater. Electron., vol. 29, p. 7262, 2018. https://doi.org/10.1007/s10854-018-8715-y.Suche in Google Scholar
[86] M. A. Ashraf and I. Alam, “Numerical simulation of CIGS, CISSe and CZTS-based solar cells with In2S3 as buffer layer and Au as back contact using SCAPS 1D,” Eng. Res. Exp., vol. 2, p. 035015, 2020. https://doi.org/10.1088/2631-8695/abade6.Suche in Google Scholar
[87] M. T. Islam, M. R. Jani, S. M. Al Amin, et al.., “Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device,” Opt. Mater., vol. 105, p. 109957, 2020. https://doi.org/10.1016/j.optmat.2020.109957.Suche in Google Scholar
[88] M. Djinkwi Wanda, S. Ouédraogo, F. Tchoffo, F. Zougmoré, and J. M. B. Ndjaka, “Numerical investigations and analysis of Cu2ZnSnS4Based solar cells by SCAPS-1D,” Int. J. Photoenergy, vol. 2016, p. 1, 2016. https://doi.org/10.1155/2016/2152018.Suche in Google Scholar
[89] R. Wu, B. Yang, J. Xiong, et al.., “Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells,” J. Renew. Sustain. Energy, vol. 7, p. 43105, 2015. https://doi.org/10.1063/1.4926578.Suche in Google Scholar
[90] M. Shasti and A. Mortezaali, “Numerical study of Cu 2 O, SrCu 2 O 2 , and CuAlO 2 as hole‐transport materials for application in perovskite solar cells,” Phys. Status Solidi A, vol. 216, p. 1900337, 2019. https://doi.org/10.1002/pssa.201900337.Suche in Google Scholar
[91] F. Azri, A. Meftah, N. Sengouga, and A. Meftah, “Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell,” Sol. Energy, vol. 181, p. 372, 2019. https://doi.org/10.1016/j.solener.2019.02.017.Suche in Google Scholar
[92] A. Sunny, S. Rahman, M. M. Khatun, and S. R. A. Ahmed, “Numerical study of high performance HTL-free CH3NH3SnI3-based perovskite solar cell by SCAPS-1D,” AIP Adv., vol. 11, p. 065102, 2021. https://doi.org/10.1063/5.0049646.Suche in Google Scholar
[93] A. Bag, R. Radhakrishnan, R. Nekovei, and R. Jeyakumar, “Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation,” Sol. Energy, vol. 196, p. 177, 2020. https://doi.org/10.1016/j.solener.2019.12.014.Suche in Google Scholar
[94] A. Ahmed, K. Riaz, H. Mehmood, T. Tauqeer, and Z. Ahmad, “Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering,” Opt. Mater., vol. 105, p. 109897, 2020. https://doi.org/10.1016/j.optmat.2020.109897.Suche in Google Scholar
[95] H. Heriche, Z. Rouabah, and N. Bouarissa, “New ultra thin CIGS structure solar cells using SCAPS simulation program,” Int. J. Hydrogen Energy, vol. 42, p. 9524, 2017. https://doi.org/10.1016/j.ijhydene.2017.02.099.Suche in Google Scholar
[96] N. Guirdjebaye, S. Ouédraogo, A. Teyou Ngoupo, G. L. Mbopda Tcheum, and J. M. B. Ndjaka, “Junction configurations and their impacts on Cu(In,Ga)Se2 based solar cells performances,” Opto-Electron. Rev., vol. 27, p. 70, 2019. https://doi.org/10.1016/j.opelre.2019.02.001.Suche in Google Scholar
[97] M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou, “Simulation of high efficiency CIGS solar cells with SCAPS-1D software,” Energy Procedia, vol. 74, p. 736, 2015. https://doi.org/10.1016/j.egypro.2015.07.809.Suche in Google Scholar
[98] S. Benabbas, Z. Rouabah, H. Heriche, and N.-E. Chelali, “A numerical study of high efficiency ultra-thin CdS/CIGS solar cells,” African J. Sci. Technol. Innov. Dev., vol. 8, p. 340, 2016. https://doi.org/10.1080/20421338.2015.1118929.Suche in Google Scholar
[99] P. Lin, L. Lin, J. Yu, S. Cheng, P. Lu, and Q. Zheng, “Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D,” J. Appl. Sci. Eng., vol. 17, p. 383, 2014.Suche in Google Scholar
[100] W. Schokley and W. T. ReadJr., “Statistics of the recombinations of holes and electrons,” Phys. Rev., vol. 87, p. 835, 1952.10.1142/9789814503464_0002Suche in Google Scholar
[101] R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev., vol. 87, p. 387, 1952. https://doi.org/10.1103/physrev.87.387.Suche in Google Scholar
[102] J. Chen and N. G. Park, “Causes and solutions of recombination in perovskite solar cells,” Adv. Mater., vol. 31, p. 1803019, 2019. https://doi.org/10.1002/adma.201803019.Suche in Google Scholar PubMed
[103] I. Alam and M. A. Ashraf, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020.Suche in Google Scholar
[104] U. Mandadapu, S. V. Vedanayakam, K. Thyagarajan, M. R. Reddy, and B. J. Babu, “Design and simulation of high efficiency tin halide perovskite solar cell,” Int. J. Renew. Energy Resour., vol. 7, p. 1603, 2017.Suche in Google Scholar
[105] A. Sunny and S. R. A. Ahmed, “Numerical simulation and performance evaluation of highly efficient Sb 2 Se 3 solar cell with tin sulfide as hole transport layer,” Phys. Status Solidi B, vol. 258, p. 2000630, 2021. https://doi.org/10.1002/pssb.202000630.Suche in Google Scholar
[106] A. Hosen, M. S. Mian, and S. R. A. Ahmed, “Simulating the performance of a highly efficient CuBi2O4-based thin-film solar cell,” SN Appl. Sci., vol. 3, p. 544, 2021. https://doi.org/10.1007/s42452-021-04554-z.Suche in Google Scholar
[107] J. A. Schwenzer, L. Rakocevic, R. Gehlhaar, et al.., “Temperature variation-induced performance decline of perovskite solar cells,” ACS Appl. Mater. Interfaces, vol. 10, p. 16390, 2018. https://doi.org/10.1021/acsami.8b01033.Suche in Google Scholar PubMed
[108] P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance-an analysis,” Sol. Energy Mater. Sol. Cell., vol. 101, p. 36, 2012. https://doi.org/10.1016/j.solmat.2012.02.019.Suche in Google Scholar
[109] S. R. A. Ahmed, A. Sunny, and S. Rahman, “Performance enhancement of Sb2Se3 solar cell using a back surface field layer: a numerical simulation approach,” Sol. Energy Mater. Sol. Cell., vol. 221, p. 110919, 2021. https://doi.org/10.1016/j.solmat.2020.110919.Suche in Google Scholar
[110] M. M. Khatun, A. Sunny, and S. R. A. Ahmed, “Numerical investigation on performance improvement of WS2 thin-film solar cell with copper iodide as hole transport layer,” Sol. Energy, vol. 224, p. 956, 2021. https://doi.org/10.1016/j.solener.2021.06.062.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Positron nonextensivity effect on the propagation of dust ion acoustic Gardner waves
- Thermal entry flow problem for Giesekus fluid inside an axis-symmetric tube through isothermal wall condition: a comparative numerical study between exact and approximate solution
- Ion-acoustic solitary structures at the acoustic speed in a collisionless magnetized nonthermal dusty plasma
- Exact Beltrami flows in a spherical shell
- Hydrodynamics
- Insight into the dynamics of non-Newtonian carboxy methyl cellulose conveying CuO nanoparticles: significance of channel branch angle and pressure drop
- Analytical and numerical study for oscillatory flow of viscoelastic fluid in a tube with isosceles right triangular cross section
- Solid State Physics & Materials Science
- Numerical study of highly efficient tin-based perovskite solar cell with MoS2 hole transport layer
- An improved photocatalytic activity of H2 production: a hydrothermal synthesis of TiO2 nanostructures in aqueous triethanolamine