Startseite Adiabatic compressibility of biphasic salt melts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adiabatic compressibility of biphasic salt melts

  • Victor P. Stepanov EMAIL logo
Veröffentlicht/Copyright: 9. Juni 2021

Abstract

The adiabatic compressibility along the two-phase saturation line was calculated for nine molten immiscible mixtures, namely, LiF + KBr, LiF + CsCl, LiF + RbBr, LiF + KI, LiF + CsBr, LiF + RbI, LiF + CsI, LiCl + AgBr, and NaCl + AgI, using experimental data on the sound velocity and density. It is shown that the ratio of compressibility of the equilibrium phases depends significantly on the sizes of the mixed ions. The dependence of the changes in compressibility in the distance and in the vicinity of the critical mixing point on the characteristics of the chemical bond between the ions is discussed.


Corresponding author: Victor P. Stepanov, Russian Academy of Sciences, Institute of High-Temperature Electrochemistry, Akademicheskaya str., 20, Yekaterinburg, 620137, Russia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. O. Bockris and N. E. Richards, “The compressibilities, free volumes and equation of state for molten electrolytes: some alkali halides and nitrates,” Proc. R. Soc. Lond. A, vol. 241, p. 44, 1957.10.1098/rspa.1957.0112Suche in Google Scholar

[2] S. Sternberg and V. Vasilescu, “Compressibilities and other volumetric properties of fused alkali chloride mixtures,” J. Chem. Therm., vol. 3, p. 877, 1971. https://doi.org/10.1016/s0021-9614(71)80017-4.Suche in Google Scholar

[3] V. D. Prissiajnyi, S. A. Kirillov, and V. V. Vasilescu, “Ultrasound velocity and compressibility of mixed salt melts,” Ionnye Rasplavy (Ionic Melts), vol. 1, p. 167, 1974.Suche in Google Scholar

[4] M. V. Smirnov, V. I. Minchenko, and V. P. Stepanov, “Adiabatic and isothermal compressibilities of molten alkali halides and their binary mixture,” Silic. Ind., vol. 41, p. 113, 1976.Suche in Google Scholar

[5] M. V. Smirnov, V. I. Minchenko, and A. N. Bukharov, “Sound absorption in molten alkali chlorides, bromides, iodides and their mixtures,” Electrochim. Acta, vol. 33, p. 213, 1988. https://doi.org/10.1016/0013-4686(88)80005-7.Suche in Google Scholar

[6] V. I. Minchenko and M. V. Smirnov, “Absorption coefficient of sound in molten mixtures of NaCl-NaBr, NaBr-NaI and NaCl-NaI,” Rasplavy (Melts), vol. 1, p. 1, 1992.Suche in Google Scholar

[7] Y. Marcus, “The compressibility of molten salts,” J. Chem. Therm., vol. 61, p. 7, 2013. https://doi.org/10.1016/j.jct.2013.01.021.Suche in Google Scholar

[8] V. V. Ignatiev, O. S. Feynberg, A. V. Zagnitko, et al.., “Molten-salt reactors: new possibilities, problems and solutions,” Atom. Energy, vol. 112, p. 157, 2012. https://doi.org/10.1007/s10512-012-9537-2.Suche in Google Scholar

[9] F. Lantelme and H. Groult, Eds. Molten Salts Chemistry. From Lab to Applications, Amsterdam, Elsevier, 2013.Suche in Google Scholar

[10] R. H. Moore, “Distribution coefficients for certain actinide and fission product chlorides in the immiscible salt systems: LiCl-KAlCl4,” J. Chem. Eng. Data, vol. 9, p. 502, 1964. https://doi.org/10.1021/je60023a007.Suche in Google Scholar

[11] N. J. Mecham and A. A. Jonke, “Commercial aspects of fuel processing reactor fuel,” React. Fuel Process., vol. 9, p. 137, 1966.Suche in Google Scholar

[12] V. A. Volkovich, D. S. Maltsev, S. Y. Melchakov, L. F. Yamshchikov, A. V. Novoselova, and V. V. Smolensky, “Separation of lanthanides and actinides in a chloride melt - liquid metal system: the effect of phase composition,” ECS Trans., vol. 75, p. 397, 2016. https://doi.org/10.1149/07515.0397ecst.Suche in Google Scholar

[13] S. Sternberg and V. Vasilescu, “Ultrasonic velocity, compressibility and excess volume of molten salts: NaCl + (Li, K, Kb, Cs)Cl,” Rev. Chim., Acad. Repub. Pop. Roum., vol. 15, p. 1665, 1970.Suche in Google Scholar

[14] M. E. Fisher, “The story of coulombic critiality,” J. Stat. Phys., vol. 75, p. 1, 1994. https://doi.org/10.1007/bf02186278.Suche in Google Scholar

[15] G. Stell, “Criticality and phase transitions in ionic fluids,” J. Stat. Phys., vol. 78, p. 197, 1995. https://doi.org/10.1007/bf02183346.Suche in Google Scholar

[16] J. M. Crosthwaite, S. N. V. K. Aki, E. J. Maginn, and J. F. Brennecke, “Liquid phase behavior of imidazolium-based ionic liquids with alcohols,” J. Phys. Chem. B, vol. 108, p. 5113, 2004. https://doi.org/10.1021/jp037774x.Suche in Google Scholar

[17] U. Domańska, M. Królikowska, and K. Paduszyński, “Physico-chemical properties and phase behaviour of piperidinium-based ionic liqids,” Fluid Phase Equilib., vol. 303, p. 1, 2011.10.1016/j.fluid.2010.12.008Suche in Google Scholar

[18] W. Schröer, “A short history of phase transitions in ionic fluids,” Contrib. Plasma Phys., vol. 52, p. 78, 2012. https://doi.org/10.1002/ctpp.201100104.Suche in Google Scholar

[19] V. P. Stepanov, “Adiabatic compressibility along the two-phase saturation line for the molten (LiF + CsCl) system,” J. Chem. Therm., vol. 138, p. 345, 2019. https://doi.org/10.1016/j.jct.2019.07.003.Suche in Google Scholar

[20] V. P. Stepanov and N. P. Kulik, “Density and adiabatic compressibility of the immiscible molten AgBr+LiCl mixture,” Z. Naturforsch., vol. 72, p. 359, 2017. https://doi.org/10.1515/zna-2016-0498.Suche in Google Scholar

[21] V. P. Stepanov, N. K. Tkachev, N. P. Kulik, and K. G. Peshkina, “Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture,” Russ. Metall., vol. 2016, p. 698, 2016. https://doi.org/10.1134/s003602951602018x.Suche in Google Scholar

[22] N. K. Tkachev, “Limited solubility of sal melts and differences in ion sizes,” Rasplavy (Melts), vol. 4, p. 90, 1999.Suche in Google Scholar

[23] N. K. Tkachev, “On the equation of state of molten alkali halides,” Teplofizika Vysokikh Temperatur (High Temperature), vol. 36, p. 583, 1999.Suche in Google Scholar

[24] G. J. Jаnz, F. W. Dampier, G. R. Lakshminarayan, P. K. Lorenz, and R. P. T. Tomkins, Molten Salts. National Standard Reference Data, NBS, vol. 15, Gaithersburg. MB, National Institute of Standards and Techno1ogy, 1968, p. 1.10.6028/NBS.NSRDS.15Suche in Google Scholar

[25] H. Schinke and F. Sauerwald, “Dichtemessungen. XVIII. über die Volumenänderung beim Schmelzen und den Schmelzproze bei Salzen,” Z. Anorg. Allg. Chem., vol. 287, p. 313, 1956. https://doi.org/10.1002/zaac.19562870417.Suche in Google Scholar

[26] L. Gagliardi and S. Bonella, “Charge transport in superionic and melted AgI under a magnetic field studied via molecular dynamics,” Phys. Rev. B, vol. 94, p. 134426, 2016. https://doi.org/10.1103/physrevb.94.134426.Suche in Google Scholar

[27] R. J. Puddephatt, The Chemistry of Gold, Amsterdam, Elsevier Scientific, 1978.Suche in Google Scholar

[28] M. Wilson, P. A. Madden, and B. J. Costa-Cabral, “Quadrupole polarization in simulations of ionic systems: application to AgCl,” J. Phys. Chem., vol. 100, p. 1227, 1996. https://doi.org/10.1021/jp9512319.Suche in Google Scholar

[29] V. P. Stepanov and V. I. Minchenko, “Ultrasound velocity in dissolving alkali halide melts,” J. Chem. Therm., vol. 43, p. 467, 2011. https://doi.org/10.1016/j.jct.2010.10.021.Suche in Google Scholar

[30] V. I. Minchenko and V. P. Stepanov, “Acoustic properties of incompletely miscible alkali fluoride and bromide melts,” Russ. J. Phys. Chem., vol. 83, p. 129, 2009. https://doi.org/10.1134/s0036024409010257.Suche in Google Scholar

[31] V. P. Stepanov and V. I. Minchenko, “Anion size effect on the velocity of sound in stratifying melts of alkali metal halide mixtures,” Russ. J. Phys. Chem., vol. 83, p. 2170, 2009. https://doi.org/10.1134/s0036024409120292.Suche in Google Scholar

[32] V. I. Minchenko and V. P. Stepanov, “The velocity of ultrasound in stratifying fluoride-iodide melts,” Russ. J. Phys. Chem., vol. 83, p. 2174, 2009. https://doi.org/10.1134/s0036024409120309.Suche in Google Scholar

[33] V. P. Stepanov and V. I. Minchenko, “Ultrasonic velocity for an equimolar mixture of molten AgI and NaCl in the biphasic region,” J. Chem. Therm., vol. 59, p. 250, 2013. https://doi.org/10.1016/j.jct.2012.12.015.Suche in Google Scholar

[34] V. P. Stepanov and V. I. Minchenko, “Sound velocities for dissolving AgI + LiCl melts,” J. Chem. Eng. Data, vol. 59, p. 3888, 2014. https://doi.org/10.1021/je500781j.Suche in Google Scholar

[35] V. P. Stepanov and V. I. Minchenko, “An anion effect on the separation of AgI-containing melts using sound waves,” J. Chem. Therm., vol. 87, p. 65, 2015. https://doi.org/10.1016/j.jct.2015.03.022.Suche in Google Scholar

[36] V. P. Stepanov and V. I. Minchenko, “Sound wave propagation in immiscible AgBr+LiCl melts,” Z. Phys. Chem., vol. 231, p. 971, 2017. https://doi.org/10.1515/zpch-2015-0744.Suche in Google Scholar

[37] V. N. Batalova, I. V. Rukavishnikova, and V. P. Stepanov, Euchem 2004. Molten Salts Conference. Proceedings, vol. 115, Poland, Widawnic-two Uniwersytetu Wroclawskiego, 2004.Suche in Google Scholar

[38] I. V. Rukavishnikova, V. N. Lokett, A. S. Burukhin, and V. P. Stepanov, “The density and surface tension of high-temperature stratifying mixtures of alkali metal bromides and lithium fluoride,” Russ. J. Phys. Chem., vol. 80, p. 1902, 2006. https://doi.org/10.1134/s0036024406120053.Suche in Google Scholar

[39] V. N. Batalova, I. V. Rukavishnikova, and V. P. Stepanov, “Phase densities of molten mixtures of alkali-metal halogenides with limited mutual solubility,” Z. Naturforsch., vol. 62, p. 303, 2007.10.1515/zna-2007-5-611Suche in Google Scholar

[40] V. N. Batalova, I. V. Rukavishnikova, and V. P. Stepanov, “The density of fluoride-iodide melts with a limited mutual solubility of components,” Russ. J. Phys. Chem., vol. 82, p. 177, 2008.10.1134/S0036024408020064Suche in Google Scholar

[41] V. P. Stepanov, N. P. Kulik, and K. G. Peshkina, “Densities of a dissolving mixture of molten (AgI+NaCl),” J. Chem. Therm., vol. 63, p. 84, 2013. https://doi.org/10.1016/j.jct.2013.03.027.Suche in Google Scholar

[42] V. P. Stepanov and N. P. Kulik, “Density and adiabatic compressibility of the immiscible molten AgBr+LiCl mixture,” Z. Naturforsch., vol. 72, p. 359, 2017. https://doi.org/10.1515/zna-2016-0498.Suche in Google Scholar

[43] S. Takeda, I. Hiraishi, and Y. Kawakita, “Ultrasonic velocity and absorption for molten silver halide mixtures,” J. Non-Cryst. Solids, vols. 250–252, p. 496, 1999. https://doi.org/10.1016/s0022-3093(99)00281-1.Suche in Google Scholar

[44] L. Blum, “Mean spherical model for asymmetric electrolytes,” Mol. Phys., vol. 30, p. 1529, 1975. https://doi.org/10.1080/00268977500103051.Suche in Google Scholar

[45] L. Blum and J. S. Hoeye, “Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function,” J. Phys. Chem., vol. 81, p. 1311, 1977. https://doi.org/10.1021/j100528a019.Suche in Google Scholar

[46] G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, “Equilibrium thermodynamic properties of the mixture of hard spheres,” J. Chem. Phys., vol. 54, p. 1523, 1971. https://doi.org/10.1063/1.1675048.Suche in Google Scholar

[47] N. K. Tkachev, “Phase diagram of a primitive model of a binary mixtures of ionic liquids,” Doklady Rossiyskoi Akademii Nauk (Reports of the Russian Academy of Sciences), vol. 362, p. 71, 1998.Suche in Google Scholar

[48] N. K. Tkachev, “Estimation of thermodynamic mixing functions for binary alkali halide melts according to Blum’s theory of asymmetric electrolytes,” High Temp. Mater. Sci., vol. 35, p. 247, 1996.Suche in Google Scholar

[49] C. Margheritis, G. Flor, and C. Sinistri, “Miscibility gaps in fused salts,” Z. Naturforsch., vol. 28, p. 1329, 1973. https://doi.org/10.1515/zna-1973-0813.Suche in Google Scholar

[50] V. P. Stepanov, L. M. Babushkina, and S. I. Dokashenko, “Liquid+liquid equilibrium in mixtures of lithium fluoride with potassium and rubidium halides,” J. Chem. Therm., vol. 51, p. 12, 2012. https://doi.org/10.1016/j.jct.2012.02.015.Suche in Google Scholar

[51] V. P. Stepanov, “Electrical conductivity of biphasic mixtures of molten silver iodide and lithium fluoride, chloride, and bromide,” Ionics, vol. 23, p. 2055, 2017.10.1007/s11581-017-2056-3Suche in Google Scholar

[52] M. L. Japas and J. M. H. Levelt Sengers, “Critical behavior of a conducting ionic solution near its consolute point,” J. Phys. Chem., vol. 94, p. 5361, 1990.10.1021/j100376a037Suche in Google Scholar

[53] A. Oleinikova and M. Bonetti, “Evidence of a critical anomaly of the electrical conductivity in highly concentrated nonaqueous ionic mixtures,” Phys. Rev. Lett., vol. 83, p. 2985, 1999. https://doi.org/10.1103/physrevlett.83.2985.Suche in Google Scholar

[54] M. Wagner, O. Stanga, and W. Schröer, “Corresponding states analysis of the critical points in binary solutions of room temperature ionic liquids,” Phys. Chem. Chem. Phys., vol. 5, p. 3943, 2003. https://doi.org/10.1039/b305959f.Suche in Google Scholar

Received: 2021-02-11
Revised: 2021-05-18
Accepted: 2021-05-19
Published Online: 2021-06-09
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0034/html?lang=de
Button zum nach oben scrollen