Home Impact of non-thermal electrons on spatial damping: a kinetic model for the parallel propagating modes
Article
Licensed
Unlicensed Requires Authentication

Impact of non-thermal electrons on spatial damping: a kinetic model for the parallel propagating modes

  • Muhammad Sarfraz EMAIL logo , Gohar Abbas , Hashim Farooq and I. Zeba
Published/Copyright: May 28, 2021

Abstract

A sequence of in situ measurements points the presence of non-thermal species in the profile of particle distributions. This study highlights the role of such energetic electrons on the wave-spectrum. Using Vlasov–Maxwell’s model, the dispersion relations of the parallel propagating modes along with the space scale of damping are discussed using non-relativistic bi-Maxwellian and bi-Kappa distribution functions under the weak field approximation, i.e., ωk.v>Ω0. Power series and asymptotic expansions of plasma dispersion functions are performed to derive the modes and spatial damping of waves, respectively. The role of these highly energetic electrons is illustrated on real frequency and anomalous damping of R and L-modes which is in fact controlled by the parameter κ in the dispersion. Further, we uncovered the effect of external magnetic field and thermal anisotropy on such spatial attenuation. In global perspective of the kinetic model, it may be another step.


Corresponding author: Muhammad Sarfraz, Department of Physics, GC University Lahore, Katchery Road, Lahore54000, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] S. P. Gary, R. M. Skoug, J. T. Steinberg, and C. W. Smith, “Proton temperature anisotropy constraint in the solar wind: ACE observations,” Geophys. Res. Lett., vol. 28, p. 2759, 2001. https://doi.org/10.1029/2001gl013165.Search in Google Scholar

[2] J. C. Kasper, A. J. Lazarus, and S. P. Gary, “Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy,” Geophys. Res. Lett., vol. 29, p. 1839, 2002. https://doi.org/10.1029/2002gl015128.Search in Google Scholar

[3] E. Marsch, X. -Z. Ao, and C. -Y. Tu, “On the temperature anisotropy of the core part of the proton velocity distribution function in the solar wind,” J. Geophys. Res., vol. 109, p. A04102, 2004. https://doi.org/10.1029/2003ja010330.Search in Google Scholar

[4] P. Hellinger, P. Travnıcek, J. C. Kasper, and A. J. Lazarus, “Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations,” Geophys. Res. Lett., vol. 33, p. 9101, 2006. https://doi.org/10.1029/2006gl025925.Search in Google Scholar

[5] L. Matteini, S. Landi, P. Hellinger, et al.., “Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU,” Geophys. Res. Lett., vol. 34, p. L20105, 2007. https://doi.org/10.1029/2007gl030920.Search in Google Scholar

[6] S. D. Bale, J. C. Kasper, G. G. Howes, E. Quataert, C. Salem, and D. Sundkvist, “Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind,” Phys. Rev. Lett., vol. 103, p. 211101, 2009. https://doi.org/10.1103/physrevlett.103.211101.Search in Google Scholar

[7] S. Stverak, P. Travnıcek, M. Maksimovic, E. Marsch, A. N. Fazakerley, and E. E. Scime, “Electron temperature anisotropy constraints in the solar wind,” J. Geophys. Res., vol. 113, p. A03103, 2008.10.1029/2007JA012733Search in Google Scholar

[8] B. A. Maruca, J. C. Kasper, and S. D. Bale, “What Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature Anisotropies?” Phys. Rev. Lett., vol. 107, p. 201101, 2011. https://doi.org/10.1103/physrevlett.107.201101.Search in Google Scholar

[9] X. H. Wei, J. B. Cao, G. C. Zhou, et al.., “Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection,” Adv. Space Res., vol. 52, p. 205, 2013. https://doi.org/10.1016/j.asr.2013.02.016.Search in Google Scholar

[10] S. S. A. Gillani, N. L. Tsintsadze, H. A. Shah, and M. Razzaq, “Instabilities and generation of a quasistationary magnetic field by the interaction of relativistically intense electromagnetic wave with a plasma,” Phys. Plasmas, vol. 17, p. 083103, 2010. https://doi.org/10.1063/1.3466848.Search in Google Scholar

[11] A. Bret and C. Deutsch, “Stabilization of the filamentation instability and the anisotropy of the background plasma,” Phys. Plasmas, vol. 13, p. 022110, 2006. https://doi.org/10.1063/1.2172362.Search in Google Scholar

[12] A. Sid, A. Ghezal, A. Soudani, and M. Bekhouche, “Weibel instability in a bi-Maxwellian laser fusion plasma,” Plasma Fusion Res., vol. 5, p. 007, 2010. https://doi.org/10.1585/pfr.5.007.Search in Google Scholar

[13] A. A. Andreev, E. G. Gamaly, V. N. Novikov, A. N. Semakhin, and V. T. Tikhonchuk, “Heating of a dense plasma by an ultrashort laser in the anomalous skin-effect regime,” Z. Eksp. Teor. Fiz., vol. 101, p. 1303, 1992.Search in Google Scholar

[14] A. Hasegawa, K. Mima, and M. Duong-van, “Plasma distribution function in a superthermal radiation field,” Phys. Rev. Lett., vol. 54, p. 2608, 1985. https://doi.org/10.1103/physrevlett.54.2608.Search in Google Scholar

[15] R. A. Treumann, “Kinetic theoretical foundation of Lorentzian statistical mechanics,” Phys. Scripta, vol. 59, p. 19, 1999. https://doi.org/10.1238/physica.regular.059a00019.Search in Google Scholar

[16] C. Vocks and G. Mann, “Generation of suprathermal electrons by resonant wave‐particle interaction in the solar corona and wind,” APJ (Acta Pathol. Jpn.), vol. 593, p. 1134, 2003. https://doi.org/10.1086/376682.Search in Google Scholar

[17] R. L. Mace, “Whistler instability enhanced by suprathermal electrons within the Earth’s foreshock,” J. Geophys. Res., vol. 103, p. 14643, 1998. https://doi.org/10.1029/98ja00616.Search in Google Scholar

[18] G. Gloeckler, J. Geiss, H. Balsiger, et al.., “The solar wind ion composition spectrometer,” Astron. AstroPhys. Suppl. Ser., vol. 92, p. 267, 1992.Search in Google Scholar

[19] S. J. Bame, J. R. Asbridge, H. E. Felthauser, E. W. Hones, and I. B. Strong, “Characteristics of the plasma sheet in the Earth’s magnetotail,” J. Geophys. Res., vol. 72, p. 113, 1967. https://doi.org/10.1029/jz072i001p00113.Search in Google Scholar

[20] G. Gloeckler and D. C. Hamilton, “AMPTE ion composition results,” Phys. Scripta, vol. T18, p. 73, 1987. https://doi.org/10.1088/0031-8949/1987/t18/009.Search in Google Scholar

[21] V. Formisano, G. Moreno, F. Palmiotto, and P. C. Hedgecock, “Solar wind interaction with the Earth’s magnetic field: 1. Magnetosheath,” J. Geophys. Res., vol. 78, p. 3714, 1973. https://doi.org/10.1029/ja078i019p03714.Search in Google Scholar

[22] V. Pierrard and J. Lemaire, “Fitting the AE-8 energy spectra with two Maxwellian functions,” Radiat. Meas., vol. 26, p. 333, 1996. https://doi.org/10.1016/1350-4487(96)00057-1.Search in Google Scholar

[23] S. M. Krimigis, T. P. Armstrong, W. I. Axford, et al.., “The magnetosphere of Uranus: hot plasma and radiation environment,” Science, vol. 233, p. 97, 1986. https://doi.org/10.1126/science.233.4759.97.Search in Google Scholar

[24] B. H. Mauk, E. P. Keath, M. Kane, et al.., “The magnetosphere of Neptune: hot plasmas and energetic particles,” J. Geophys. Res., vol. 96, p. 19061, 1991. https://doi.org/10.1029/91ja01820.Search in Google Scholar

[25] V. A. Godyak and R. B. Piejak, “Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz,” Phys. Rev. Lett., vol. 65, p. 996, 1990. https://doi.org/10.1103/physrevlett.65.996.Search in Google Scholar

[26] V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, “Evolution of the electron-energy-distribution function during rf discharge transition to the high-voltage mode,” Phys. Rev. Lett., vol. 68, p. 40, 1992. https://doi.org/10.1103/physrevlett.68.40.Search in Google Scholar

[27] M. M. Turner, R. A. Doyle, and M. B. Hopkins, “Measured and simulated electron energy distribution functions in a low‐pressure radio frequency discharge in argon,” Appl. Phys. Lett., vol. 62, p. 3247, 1993. https://doi.org/10.1063/1.109088.Search in Google Scholar

[28] E. S. Weibel, “Anomalous skin effect in a plasma,” Phys. Fluids, vol. 10, p. 741, 1967. https://doi.org/10.1063/1.1762185.Search in Google Scholar

[29] A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics, Berlin/Heidelberg, Springer-Verlag, 1984.10.1007/978-3-642-69247-5Search in Google Scholar

[30] G. E. H. Reuter and E. H. Sondheimer, “The theory of the anomalous skin effect in metals,” Proc. R. Soc. London, Ser. A, vol. 195, p. 336, 1948.10.1038/161394a0Search in Google Scholar

[31] I. F. Voloshin, S. V. Kravchenko, L. M. Fisher, and V. A. Yampol’skii, “Nonlinear anomalous skin effect in metals,” Zh. Eksp. Teor. Fiz., vol. 88, p. 1460, 1985.Search in Google Scholar

[32] B. B. L. Witte, P. Sperling, M. French, V. Recoules, S. H. Glenzer, and R. Redmer “Observations of non-linear plasmon damping in dense plasmas,” Phys. Plasmas, vol. 25, p. 056901, 2018.10.1063/1.5017889Search in Google Scholar

[33] A. A. Andreev, K. Y. Platonov, and J. C. Gauthier, “Skin effect in strongly inhomogeneous laser plasmas with weakly anisotropic temperature distribution,” Phys. Rev. E, vol. 58, p. 2424, 1998. https://doi.org/10.1103/physreve.58.2424.Search in Google Scholar

[34] G. Ferrante, M. Zarcone, and S. A. Urypin, “Anomalous transmission of an ultrashort ionizing laser pulse through a thin foil,” Phys. Rev. Lett., vol. 91, p. 085005, 2003. https://doi.org/10.1103/physrevlett.91.085005.Search in Google Scholar

[35] I. Kaganovich, E. Startsev, and G. Shvets, “Anomalous skin effect for anisotropic electron velocity distribution function,” Phys. Plasmas, vol. 11, p. 6, 2004. https://doi.org/10.1063/1.1723461.Search in Google Scholar

[36] Z. Iqbal, A. Hussain, G. Murtaza, and M. Ali, “On the damping of right hand circularly polarized waves in spin quantum plasmas,” Phys. Plasmas, vol. 21, p. 122118, 2014. https://doi.org/10.1063/1.4904816.Search in Google Scholar

[37] P. M. Platzman and S. J. Buchsbaum, “Transmission of electromagnetic waves through plasma slabs,” Phys. Rev., vol. 132, p. 2, 1963. https://doi.org/10.1103/physrev.132.2.Search in Google Scholar

[38] N. Sternberg, V. Godyak, and D. Hoffma, “Magnetic field effects on gas discharge plasmas,” Phys. Plasmas, vol. 13, p. 063511, 2006.10.1063/1.2214537Search in Google Scholar

[39] S. S. Kim, C. S. Chang, N. S. Yoon, and K. W. Whang, “Inductively coupled plasma heating in a weakly magnetized plasma,” Phys. Plasmas, vol. 6, p. 2926, 1999. https://doi.org/10.1063/1.873250.Search in Google Scholar

[40] G. Abbas, M. F. Bashir, and G. Murtaza, “Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves,” Phys. Plasmas, vol. 18, p. 102115, 2011. https://doi.org/10.1063/1.3652694.Search in Google Scholar

[41] G. Abbas, M. Sarfraz, and H. A. Shah, “Anomalous skin effects in a weakly magnetized degenerate electron plasma,” Phys. Plasmas, vol. 21, p. 092108, 2014. https://doi.org/10.1063/1.4894698.Search in Google Scholar

[42] I. B. Bernstein, “Waves in a plasma in a magnetic field,” Phys. Rev., vol. 109, p. 10, 1958. https://doi.org/10.1103/physrev.109.10.Search in Google Scholar

[43] D. C. Montgomery and D. A. Tidman, Plasma Kinetic Theory, New York, McGraw-Hill, 1964, p. 142.Search in Google Scholar

[44] B. Buti, “Relativistic effects on plasma oscillations and two-stream instability. I,” Phys. Fluids, vol. 6, p. 89, 1963. https://doi.org/10.1063/1.1724513.Search in Google Scholar

[45] A. Sagiv and E. Waxman, “Collective processes in relativistic plasma and their implications for gamma‐ray burst afterglows,” APJ (Acta Pathol. Jpn.), vol. 574, p. 861, 2002. https://doi.org/10.1086/340948.Search in Google Scholar

[46] S. P. Gary, Theory of Space Plasma Microinstabilities, Cambridge, Cambridge University Press, 1993.10.1017/CBO9780511551512Search in Google Scholar

[47] D. Summers and R. M. Thorne, “The modified plasma dispersion function,” Phys. Fluid. Plasma Phys., vol. 3, p. 1835, 1991. https://doi.org/10.1063/1.859653.Search in Google Scholar

[48] M. N. S. Qureshi, H. A. Shah, G. Murtaza, S. J. Schwartz, and F. Mahmood, “Parallel propagating electromagnetic modes with the generalized (r,q) distribution function,” Phys. Plasmas, vol. 11, p. 3819, 2004. https://doi.org/10.1063/1.1688329.Search in Google Scholar

[49] M. Maksimovic, I. Zouganelis, J. -Y. Chaufray, et al.., “Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU,” J. Geophys. Res., vol. 110, p. A09104, 2005. https://doi.org/10.1029/2005ja011119.Search in Google Scholar

[50] M. Lazar and S. Poedts, “Firehose instability in space plasmas with bi-kappa distributions,” Astron. Astrophys., vol. 494, p. 311, 2009. https://doi.org/10.1051/0004-6361:200811109.10.1051/0004-6361:200811109Search in Google Scholar

[51] A. F. Viñas, P. S. Moya, R. E. Navarro, J. A. Valdivia, J. A. Araneda, and V. Muñoz, “Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma,” J. Geophys. Res.: Space Phys., vol. 120, p. 3307, 2015. https://doi.org/10.1002/2014ja020554.Search in Google Scholar

[52] M. Lazar, S. M. Shaaban, S. Poedts, and Š. Štverák, “Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind,” Mon. Not. Roy. Astron. Soc., vol. 464, p. 564, 2017. https://doi.org/10.1093/mnras/stw2336.Search in Google Scholar

[53] T. H. Khokhar, M. F. Bashir, P. H. Yoon, R. A. López, and G. Murtaza, “Spatial damping of parallel propagating electromagnetic waves in magnetized plasmas,” Phys. Plasmas, vol. 25, p. 084501, 2018. https://doi.org/10.1063/1.5035285.Search in Google Scholar

[54] T. H. Khokhar, P. H. Yoon, R. A. López, and G. Murtaza, “Spatial propagation and damping of ordinary electromagnetic mode,” Phys. Plasmas, vol. 25, p. 082114, 2018. https://doi.org/10.1063/1.5043356.Search in Google Scholar

[55] G. Abbas, M. F. Bashir, and G. Murtaza, “Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves,” Phys. Plasmas, vol. 18, p. 102115, 2011. https://doi.org/10.1063/1.3652694.Search in Google Scholar

[56] G. Abbas, G. Murtaza, and R. J. Kingham, “High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma,” Phys. Plasmas, vol. 17, p. 072105, 2010. https://doi.org/10.1063/1.3460345.Search in Google Scholar

[57] G. Abbas, M. F. Bashir, M. Ali, and G. Murtaza, “Study of high frequency parallel propagating modes in a weakly magnetized relativistic degenerate electron plasma,” Phys. Plasmas, vol. 19, p. 032103, 2012. https://doi.org/10.1063/1.3690099.Search in Google Scholar

[58] S. Noureen, G. Abbas, and M. Sarfraz, “On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 25, p. 012123, 2018. https://doi.org/10.1063/1.4894698.Search in Google Scholar

[59] M. Hellberg, R. Mace, and T. Cattaert, “Effects of superthermal particles on waves in magnetized space plasmas,” Space Sci. Rev., vol. 121, p. 127, 2005. https://doi.org/10.1007/s11214-006-5024-1.Search in Google Scholar

[60] V. Pierrard and M. Lazar, “Kappa distributions: theory and applications in space plasmas,” Sol. Phys., vol. 267, p. 153, 2010. https://doi.org/10.1007/s11207-010-9640-2.Search in Google Scholar

[61] M. P. Leubner and N. Schupfer, “Mirror instability thresholds in suprathermal space plasmas,” J. Geophys. Res., vol. 105, p. 27387, 2000. https://doi.org/10.1029/1999ja000447.Search in Google Scholar

[62] M. P. Leubner and N. Schupfer, “A general kinetic mirror instability criterion for space applications,” J. Geophys. Res., vol. 106, p. 12993, 2001. https://doi.org/10.1029/2000ja000425.Search in Google Scholar

[63] M. Lazar, S. Poedts, and H. Fichtner, “Destabilizing effects of the suprathermal populations in the solar wind,” Astron. Astrophys., vol. 582, p. A124, 2015. https://doi.org/10.1051/0004-6361/201526509.Search in Google Scholar

[64] M. Lazar and P. H. Yoon, “On the interpretation and applicability of κ-distributions,” Astron. Astrophys., vol. 589, p. A39, 2016. https://doi.org/10.1051/0004-6361/201527593.Search in Google Scholar

[65] B. Fried and S. D. Conte, The Plasma Dispersion Function, New York and London, Academic Press, 1961.Search in Google Scholar

[66] M. Lazar, S. Poedts, R. Schlickeiser, and P. K. Shukla, “Proton Firehose instability in bi-Kappa distributed plasmas,” Astron. Astrophys., vol. 534, p. A116, 2011. https://doi.org/10.1051/0004-6361/201116982.Search in Google Scholar

Received: 2020-12-23
Revised: 2021-05-08
Accepted: 2021-05-10
Published Online: 2021-05-28
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0352/html
Scroll to top button