Startseite On the evolution of acceleration discontinuities in van der Waals dusty magnetogasdynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the evolution of acceleration discontinuities in van der Waals dusty magnetogasdynamics

  • Shobhit Kumar Srivastava EMAIL logo , Rahul Kumar Chaturvedi und Lal Pratap Singh
Veröffentlicht/Copyright: 4. März 2021

Abstract

The article presents the study of the evolutionary behavior of plane and cylindrically symmetric acceleration discontinuities along the characteristic path under the effect of dust particles in a non-ideal magnetogasdynamic flow. Implications regarding the propagation of disturbances in planar and cylindrically symmetric flows have been shown. Using the characteristics of the governing quasilinear system as a reference coordinate system, we transform the fundamental equations and find the solution. It is explored how the dust particles, along with the nonideal parameter, will influence the steepening or flattening of the propagating waves in magnetic and nonmagnetic cases. The transport equation leading to the evolution of acceleration discontinuities is determined, which provides the relation for the occurrence of shock. The impact of non-idealness of the gas and dust on the evolutionary process of propagating waves for the magnetic and nonmagnetic cases are discussed. The comparison between the flow patterns and distortion of the propagating waves for planar and cylindrically symmetric flows is demonstrated under the various parameter effects.


Corresponding author: Shobhit Kumar Srivastava, Department of Mathematical Sciences, Indian Institute of Technology (Banaras Hindu University), Varanasi221005, India, E-mail:

Acknowledgments

The author, Shobhit Kumar Srivastava, acknowledges University Grants Commission (UGC), New Delhi, India for the award of SRF fellowship. The authors are grateful to the anonymous referees for their valuable comments, which have helped to improve the manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Arora and V. Sharma, “Convergence of strong shock in a van der waals gas,” SIAM J. Appl. Math., vol. 66, no. 5, pp. 1825–1837, 2006, https://doi.org/10.1137/050634402.Suche in Google Scholar

[2] L. Singh, S. Ram, and D. Singh, “Exact solution of planar and nonplanar weak shock wave problem in gasdynamics,” Chaos, Solit. Fractals, vol. 44, no. 11, pp. 964–967, 2011, https://doi.org/10.1016/j.chaos.2011.07.012.Suche in Google Scholar

[3] J. Vishwakarma and G. Nath, “Spherical shock wave generated by a moving piston in mixture of a non-ideal gas and small solid particles under a gravitational field,” Commun. Nonlinear Sci. Numer. Simulat., vol. 17, no. 6, pp. 2382–2393, 2012, https://doi.org/10.1016/j.cnsns.2011.10.018.Suche in Google Scholar

[4] D. Singh, R. Arora, and A. Chauhan, “Similarity solutions for strong shock waves in magnetogasdynamics under a gravitational field,” Ric. Mat., pp. 1–20, 2020, https://doi.org/10.1007/s11587-020-00529-1.Suche in Google Scholar

[5] M. J. Siddiqui, R. Arora, and A. Kumar, “Shock waves propagation under the influence of magnetic field,” Chaos, Solit. Fractals, vol. 97, pp. 66–74, 2017, https://doi.org/10.1016/j.chaos.2016.12.020.Suche in Google Scholar

[6] W. Green, “The growth of plane discontinuities propagating into a homogeneously deformed elastic material,” Arch. Ration. Mech. Anal., vol. 16, no. 2, pp. 79–88, 1964, https://doi.org/10.1007/bf00281332.Suche in Google Scholar

[7] E. Varley, “Acceleration fronts in viscoelastic materials,” Arch. Ration. Mech. Anal., vol. 19, no. 3, pp. 215–225, 1965, https://doi.org/10.1007/bf00277009.Suche in Google Scholar

[8] R. Ram, “Effect of radiative heat transfer on the growth and decay of acceleration waves,” Appl. Sci. Res., vol. 34, no. 1, pp. 93–104, 1978, https://doi.org/10.1007/bf00389278.Suche in Google Scholar

[9] R. K. Chaturvedi, S. K. Srivastava, and L. Singh, “Evolution of acceleration waves in nonideal radiative magnetogasdynamics,” Eur. Phys. J. Plus, vol. 134, no. 11, p. 564, 2019, https://doi.org/10.1140/epjp/i2019-12895-3.Suche in Google Scholar

[10] L. Singh, R. Singh, and S. Ram, “Evolution and decay of acceleration waves in perfectly conducting inviscid radiative magnetogasdynamics,” Astrophys. Space Sci., vol. 342, no. 2, pp. 371–376, 2012, https://doi.org/10.1007/s10509-012-1189-0.Suche in Google Scholar

[11] D. C. Chou and B. T. Chu, “On the decay of weak shock waves in axisymmetric nonequilibrium flow,” J. Fluid Mech., vol. 50, no. 2, pp. 355–367, 1971, https://doi.org/10.1017/s0022112071002611.Suche in Google Scholar

[12] V. Sharma, L. Singh, and R. Ram, “The progressive wave approach analyzing the decay of a sawtooth profile in magnetogasdynamics,” Phys. Fluids, vol. 30, no. 5, pp. 1572–1574, 1987, https://doi.org/10.1063/1.866222.Suche in Google Scholar

[13] M. Van Dyke and A. Guttmann, “The converging shock wave from a spherical or cylindrical piston,” J. Fluid Mech., vol. 120, pp. 451–462, 1982, https://doi.org/10.1017/s0022112082002845.Suche in Google Scholar

[14] R. Shankar, “On growth and propagation of shock waves in radiation-magneto gas dynamics,” Int. J. Eng. Sci., vol. 27, no. 11, pp. 1315–1323, 1989, https://doi.org/10.1016/0020-7225(89)90056-6.Suche in Google Scholar

[15] C. Wu and P. Roberts, “Structure and stability of a spherical shock wave in a van der waals gas,” Q. J. Mech. Appl. Math., vol. 49, no. 4, pp. 501–543, 1996, https://doi.org/10.1093/qjmam/49.4.501.Suche in Google Scholar

[16] J. B. Keller, “Geometrical acoustics. i. The theory of weak shock waves,” J. Appl. Phys., vol. 25, no. 8, pp. 938–947, 1954, https://doi.org/10.1063/1.1721807.Suche in Google Scholar

[17] M. Chadha and J. Jena, “Impact of dust in the decay of blast waves produced by a nuclear explosion,” Proc. R. Soc. A, vol. 476, no. 2238, p. 20200105, 2020, https://doi.org/10.1098/rspa.2020.0105.Suche in Google Scholar PubMed PubMed Central

[18] W. Gretler and R. Regenfelder, “Similarity solution for variable energy shock waves in a dusty gas under isothermal flow-field condition,” Fluid Dynam. Res., vol. 32, no. 3, p. 69, 2003, https://doi.org/10.1016/s0169-5983(03)00002-9.Suche in Google Scholar

[19] F. Higashino and T. Suzuki, “The effect of particles on blast waves in a dusty gas,” Z. Naturforsch., vol. 35, no. 12, pp. 1330–1336, 1980, https://doi.org/10.1515/zna-1980-1212.Suche in Google Scholar

[20] O. Igra, G. Hu, J. Falcovitz, and B. Wang, “Shock wave reflection from a wedge in a dusty gas,” Int. J. Multiphas. Flow, vol. 30, no. 9, pp. 1139–1169, 2004, https://doi.org/10.1016/j.ijmultiphaseflow.2004.05.008.Suche in Google Scholar

[21] H. Miura, “Decay of shock waves in a dusty-gas shock tube,” Fluid Dynam. Res., vol. 6, no. 5–6, p. 251, 1990, https://doi.org/10.1016/0169-5983(90)90015-q.Suche in Google Scholar

[22] H. Miura and I. I. Glass, “On the passage of a shock wave through a dusty-gas layer,” Proc. R. Soc. Lond. A Proc. Math. Phys. Sci., vol. 385, no. 1788, pp. 85–105, 1983.10.21236/ADA114808Suche in Google Scholar

[23] G. Nath, “Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas,” Indian J. Phys., vol. 90, no. 9, pp. 1055–1068, 2016, https://doi.org/10.1007/s12648-016-0842-9.Suche in Google Scholar

[24] Sharma, K., Chauhan, A., Arora, R., Steepening of waves in non-ideal reacting gas with dust particles, Indian J. Phys. (2020) 1–7, doi:https://doi.org/10.1007/s12648-020-01861-w.https://doi.org/10.1007/s12648-020-01861-wSuche in Google Scholar

[25] K. Sharma, R. Arora, A. Chauhan, and A. Tiwari, “Propagation of waves in a nonideal magnetogasdynamics with dust particles,” Z. Naturforsch., vol. 75, no. 3, pp. 193–200, 2020, https://doi.org/10.1515/zna-2019-0255.Suche in Google Scholar

[26] M. Puttscher and A. Melzer, “Dust particles under the influence of crossed electric and magnetic fields in the sheath of an rf discharge,” Phys. Plasmas, vol. 21, no. 12, p. 123704, 2014, https://doi.org/10.1063/1.4904039.Suche in Google Scholar

[27] G. Morfill and E. Grün, “The motion of charged dust particles in interplanetary space – I. The zodiacal dust cloud,” Planet. Space Sci., vol. 27, no. 10, pp. 1269–1282, 1979, https://doi.org/10.1016/0032-0633(79)90105-3.Suche in Google Scholar

[28] G. J. Consolmagno, “Influence of the interplanetary magnetic field on cometary and primordial dust orbits: Applications of Lorentz scattering,” Icarus, vol. 43, no. 2, pp. 203–214, 1980, https://doi.org/10.1016/0019-1035(80)90121-9.Suche in Google Scholar

[29] C. Eswaraiah, G. Maheswar, A. Pandey, J. Jose, A. Ramaprakash, and H. Bhatt, “A study of the starless dark cloud ldn 1570: Distance, dust properties, and magnetic field geometry,” Astron. Astrophys., vol. 556, p. A65, 2013, https://doi.org/10.1051/0004-6361/201220603.Suche in Google Scholar

[30] L. Fanciullo, V. Guillet, F. Boulanger, and A. Jones, “Interplay of dust alignment, grain growth, and magnetic fields in polarization: lessons from the emission-to-extinction ratio,” Astron. Astrophys., vol. 602, p. A7, 2017, https://doi.org/10.1051/0004-6361/201630373.Suche in Google Scholar

[31] T. Elperin, G. Ben-Dor, and O. Igra, “Head-on collision of normal shock waves in dusty gases,” Int. J. Heat Fluid Flow, vol. 8, no. 4, pp. 303–312, 1987, https://doi.org/10.1016/0142-727x(87)90066-x.Suche in Google Scholar

[32] M. Chadha and J. Jena, “Propagation of weak waves in a dusty, van der waals gas,” Meccanica, vol. 51, no. 9, pp. 2145–2157, 2016, https://doi.org/10.1007/s11012-015-0354-2.Suche in Google Scholar

[33] P. Sahu, “Cylindrical shock waves in rotational axisymmetric non-ideal dusty gas with increasing energy under the action of monochromatic radiation,” Phys. Fluids, vol. 29, no. 8, p. 086102, 2017, https://doi.org/10.1063/1.4998962.Suche in Google Scholar

[34] H. Steiner and T. Hirschler, “A self-similar solution of a shock propagation in a dusty gas,” Eur. J. Mech. B Fluid, vol. 21, no. 3, pp. 371–380, 2002, https://doi.org/10.1016/s0997-7546(02)01181-0.Suche in Google Scholar

[35] S. Pai, S. Menon, and Z. Fan, “Similarity solutions of a strong shock wave propagation in a mixture of a gas and dusty particles,” Int. J. Eng. Sci., vol. 18, no. 12, pp. 1365–1373, 1980, https://doi.org/10.1016/0020-7225(80)90093-2.Suche in Google Scholar

[36] R. K. Chaturvedi, P. Gupta, and L. Singh, “Evolution of weak shock wave in two dimensional steady supersonic flow in dusty gas,” Acta Astronaut., vol. 160, pp. 552–557, 2019, https://doi.org/10.1016/j.actaastro.2019.02.021.Suche in Google Scholar

[37] Chaturvedi, R. K., Srivastava, S. K., Singh, L., Effect of solid dust particles on the propagation of shock wave in planar and non-planar gasdynamics, Chin. J. Phys. 65 (2020) 114–122.10.1016/j.cjph.2020.02.024Suche in Google Scholar

[38] S. K. Srivastava, R. K. Chaturvedi, and L. P. Singh, “On the evolution of finite and small amplitude waves in non-ideal gas with dust particles,” Phys. Scripta, vol. 95, no. 6, p. 065205, 2020, https://doi.org/10.1088/1402-4896/ab7fec.Suche in Google Scholar

[39] S. Mehla and J. Jena, “Shock wave kinematics in a relaxing gas with dust particles,” Z. Naturforsch., vol. 74, no. 9, pp. 787–798, 2019, https://doi.org/10.1515/zna-2018-0469.Suche in Google Scholar

Received: 2020-12-23
Accepted: 2021-02-05
Published Online: 2021-03-04
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0351/pdf?lang=de
Button zum nach oben scrollen