Arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of non-thermal and isothermal electrons
Abstract
Using Sagdeev pseudo-potential technique, we have studied the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless plasma consisting of adiabatic warm ions, non-thermal hot electrons and isothermal cold electrons immersed in an external uniform static magnetic field. We have used the phase portraits of the dynamical system describing the non-linear behaviour of ion acoustic waves to confirm the existence of different solitary structures. We have found that the system supports (a) positive potential solitons, (b) negative potential solitons, (c) coexistence of both positive and negative potential solitons, (d) negative potential double layers, (e) negative potential supersolitons and (f) positive potential supersolitons. Again, we have seen that the amplitude of the positive potential solitons decreases or increases with increasing nch according to whether
Acknowledgements
The authors are grateful to both the reviewers for their constructive comments, without which this paper could not have been written in its present form. The authors are also grateful to Prof. Manoranjan Khan, Emeritus Professor, Department of Instrumentation Science & Centre for Plasma studies, Jadavpur University for his helpful suggestions.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] W. C. Feldman, J. R. Asbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary, “Solar wind electrons,” J. Geophys. Res., vol. 80, p. 4181, 1975. https://doi.org/10.1029/ja080i031p04181.Suche in Google Scholar
[2] M. Temerin, K. Cerny, W. Lotko, and F. S. Mozer, “Observations of double layers and solitary waves in the auroral plasma,” Phys. Rev. Lett., vol. 48, p. 1175, 1982. https://doi.org/10.1103/physrevlett.48.1175.Suche in Google Scholar
[3] W. D. Jones, A. Lee, S. M. Gleman, and H. J. Doucet, “Propagation of ion-acoustic waves in a two-electron-temperature plasma,” Phys. Rev. Lett., vol. 35, p. 1349, 1975. https://doi.org/10.1103/physrevlett.35.1349.Suche in Google Scholar
[4] N. Hershkowitz, “Review of recent laboratory double layer experiments,” Space Sci. Rev., vol. 41, p. 351, 1985. https://doi.org/10.1007/bf00190655.Suche in Google Scholar
[5] Y. Nishida and T. Nagasawa, “Excitation of ion-acoustic rarefactive solitons in a two-electron-temperature plasma,” Phys. Fluids, vol. 29, p. 345, 1986. https://doi.org/10.1063/1.865717.Suche in Google Scholar
[6] G. Hairapetian and R. L. Stenzel, “Observation of a stationary, current-free double layer in a plasma,” Phys. Rev. Lett., vol. 65, p. 175, 1990. https://doi.org/10.1103/physrevlett.65.175.Suche in Google Scholar
[7] R. E. Ergun, C. W. Carlson, J. P. McFadden, et al.., “FAST satellite observations of electric field structures in the auroral zone,” Geophys. Res. Lett., vol. 25, p. 2025, 1998. https://doi.org/10.1029/98gl00635.Suche in Google Scholar
[8] R. E. Ergun, C. W. Carlson, J. P. McFadden, et al.., “FAST satellite wave observations in the AKR source region,” Geophys. Res. Lett., vol. 25, p. 2061, 1998. https://doi.org/10.1029/98gl00570.Suche in Google Scholar
[9] G. T. Delory, R. E. Ergun, C. W. Carlson, et al.., “FAST observations of electron distributions within AKR source regions,” Geophys. Res. Lett., vol. 25, p. 2069, 1998. https://doi.org/10.1029/98gl00705.Suche in Google Scholar
[10] R. Pottelette, R. E. Ergun, R. A. Treumann, et al.., “Modulated electron-acoustic waves in auroral density cavities: FAST observations,” Geophys. Res. Lett., vol. 26, p. 2629, 1999. https://doi.org/10.1029/1999gl900462.Suche in Google Scholar
[11] J. P. McFadden, C. W. Carlson, R. E. Ergun, et al.., “FAST observations of ion solitary waves,” J. Geophys. Res., vol. 108, p. 8018, 2003. https://doi.org/10.1029/2002JA009485.Suche in Google Scholar
[12] R. Boström, G. Gustafsson, B. Holback, G. Holmgren, H. Koskinen, and P. Kintner, “Characteristics of solitary waves and weak double layers in the magnetospheric plasma,” Phys. Rev. Lett., vol. 61, p. 82, 1988. https://doi.org/10.1103/physrevlett.61.82.Suche in Google Scholar
[13] R. Boström, “Observations of weak double layers on auroral field lines,” IEEE Trans. Plasma Sci., vol. 20, p. 756, 1992. https://doi.org/10.1109/27.199524.Suche in Google Scholar
[14] H. Matsumoto, H. Kojima, T. Miyatake, et al.., “Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL,” Geophys. Res. Lett., vol. 21, p. 2915, 1994. https://doi.org/10.1029/94gl01284.Suche in Google Scholar
[15] J. R. Franz, P. M. Kintner, and J. S. Pickett, “POLAR observations of coherent electric field structures,” Geophys. Res. Lett., vol. 25, p. 1277, 1998. https://doi.org/10.1029/98gl50870.Suche in Google Scholar
[16] C. A. Cattell, J. Dombeck, J. R. Wygant, et al.., “Comparisons of polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone,” Geophys. Res. Lett., vol. 26, p. 425, 1999. https://doi.org/10.1029/1998gl900304.Suche in Google Scholar
[17] P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, “Freja multiprobe observations of electrostatic solitary structures,” Geophys. Res. Lett., vol. 21, p. 1827, 1994. https://doi.org/10.1029/94gl00886.Suche in Google Scholar
[18] R. A. Cairns, A. A. Mamum, R. Bingham, et al.., “Electrostatic solitary structures in non-thermal plasmas,” Geophys. Res. Lett., vol. 22, p. 2709, 1995. https://doi.org/10.1029/95gl02781.Suche in Google Scholar
[19] O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons,” Phys. Plasmas, vol. 21, 2014, Art no. 082304. https://doi.org/10.1063/1.4891877.Suche in Google Scholar
[20] S. V. Singh and G. S. Lakhina, “Ion-acoustic supersolitons in the presence of non-thermal electrons,” Commun. Nonlinear Sci. Numer. Simulat., vol. 23, p. 274, 2015. https://doi.org/10.1016/j.cnsns.2014.11.017.Suche in Google Scholar
[21] O. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma,” Phys. Plasmas, vol. 23, 2016, Art no. 032309. https://doi.org/10.1063/1.4944669.Suche in Google Scholar
[22] S. Dalui, A. Bandyopadhyay, and K. P. Das, “Modulational instability of ion acoustic waves in a multi-species collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons,” Phys. Plasmas, vol. 24, 2017, Art no. 042305. https://doi.org/10.1063/1.4980837.Suche in Google Scholar
[23] H. Kaur, T. S. Gill, and P. Bala, “Propagation characteristics of ion-acoustic double layer in multicomponent inhomogeneous auroral zone plasma,” Pramana, vol. 89, p. 28, 2017. https://doi.org/10.1007/s12043-017-1429-5.Suche in Google Scholar
[24] S. Dalui, A. Bandyopadhyay, and K. P. Das, “Modulational instability of ion acoustic waves in a multi-species collisionless magnetized plasma consisting of nonthermal and isothermal electrons,” Phys. Plasmas, vol. 24, p. 102310, 2017. https://doi.org/10.1063/1.4991806.Suche in Google Scholar
[25] S. Dalui and A. Bandyopadhyay, “Modulation instability of obliquely propagating ion acoustic waves in a collisionless magnetized plasma consisting of nonthermal and isothermal electrons,” Astrophys. Space Sci., vol. 364, p. 182, 2019. https://doi.org/10.1007/s10509-019-3672-3.Suche in Google Scholar
[26] S. Dalui and A. Bandyopadhyay, “Effect of Landau damping on ion acoustic solitary waves in a collisionless unmagnetized plasma consisting of nonthermal and isothermal electrons,” Indian J. Phys., vol. 95, pp. 367–381, 2020. https://doi.org/10.1007/s12648-020-01731-5.Suche in Google Scholar
[27] R. Z. Sagdeev and M. A. Leontovich, Reviews of Plasma Physics, vol. 4, New York, Consultants Bureau, 1966.Suche in Google Scholar
[28] H. Washimi and T. Taniuti, “Propagation of ion-acoustic solitary waves of small amplitude,” Phys. Rev. Lett., vol. 17, p. 996, 1966. https://doi.org/10.1103/physrevlett.17.996.Suche in Google Scholar
[29] M. Y. Yu, P. K. Shukla, and S. Bujarbarua, “Fully nonlinear ion-acoustic solitary waves in a magnetized plasma,” Phys. Fluids, vol. 23, p. 2146, 1980. https://doi.org/10.1063/1.862872.Suche in Google Scholar
[30] K. Nishihara and M. Tajiri, “Rarefaction ion acoustic solitons in two-electron-temperature plasma,” J. Phys. Soc. Jpn., vol. 50, p. 4047, 1981. https://doi.org/10.1143/jpsj.50.4047.Suche in Google Scholar
[31] R. Bharuthram and P. K. Shukla, “Large amplitude ion-acoustic double layers in a double Maxwellian electron plasma,” Phys. Fluids, vol. 29, p. 3214, 1986. https://doi.org/10.1063/1.865839.Suche in Google Scholar
[32] S. Baboolal, R. Bharuthram, and M. A. Hellberg, “Arbitrary-amplitude rarefactive ion-acoustic double layers in warm multi-fluid plasmas,” J. Plasma Phys., vol. 40, p. 163, 1988. https://doi.org/10.1017/s0022377800013180.Suche in Google Scholar
[33] S. Baboolal, R. Bharuthram, and M. A. Hellberg, “Arbitrary-amplitude theory of ion-acoustic solitons in warm multi-fluid plasmas,” J. Plasma Phys., vol. 41, p. 341, 1989. https://doi.org/10.1017/s002237780001391x.Suche in Google Scholar
[34] S. Baboolal, R. Bharuthram, and M. A. Hellberg, “Cut-off conditions and existence domains for large-amplitude ion-acoustic solitons and double layers in fluid plasmas,” J. Plasma Phys., vol. 44, p. 1, 1990. https://doi.org/10.1017/S0022377800014975.Suche in Google Scholar
[35] R. A. Cairns, A. A. Mamun, R. Bingham, and P. K. Shukla, “Ion-acoustic solitons in a magnetized plasma with nonthermal electrons,” Phys. Scripta, vol. T63, p. 80, 1996. https://doi.org/10.1088/0031-8949/1996/t63/012.Suche in Google Scholar
[36] S. G. Tagare, “Ion-acoustic solitons and double layers in a two-electron temperature plasma with hot isothermal electrons and cold ions,” Phys. Plasmas, vol. 7, p. 883, 2000. https://doi.org/10.1063/1.873885.Suche in Google Scholar
[37] S. V. Singh and G. S. Lakhina, “Electron acoustic solitary waves with non-thermal distribution of electrons,” Nonlinear Process. Geophys., vol. 11, p. 275, 2004. https://doi.org/10.5194/npg-11-275-2004.Suche in Google Scholar
[38] C. R. Choi, C. M. Ryu, N. C. Lee, and D. Y. Lee, “Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field,” Phys. Plasmas, vol. 12, 2005, Art no. 022304. https://doi.org/10.1063/1.1843820.Suche in Google Scholar
[39] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic super solitary waves in dusty multispecies plasmas,” IEEE Trans. Plasma Sci., vol. 40, p. 1429, 2012. https://doi.org/10.1109/tps.2012.2189026.Suche in Google Scholar
[40] A. E. Dubinov and D. Y. Kolotkov, “Interpretation of ion-acoustic solitons of unusual form in experiments in SF6-Ar plasma,” High Energy Chem., vol. 46, p. 349, 2012. https://doi.org/10.1134/s0018143912060033.Suche in Google Scholar
[41] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic supersolitons in plasma,” Plasma Phys. Rep., vol. 38, p. 909, 2012. https://doi.org/10.1134/s1063780x12100054.Suche in Google Scholar
[42] Y. Nakamura and I. Tsukabayashi, “Modified Korteweg-de Vries ion-acoustic solitons in a plasma,” J. Plasma Phys., vol. 34, p. 401, 1985. https://doi.org/10.1017/s0022377800002968.Suche in Google Scholar
[43] Y. Nakamura, J. L. Ferreira, and G. O. Ludwig, “Experiments on ion-acoustic rarefactive solitons in a multicomponent plasma with negative ions,” J. Plasma Phys., vol. 33, p. 237, 1985 https://doi.org/10.1017/S0022377800002476.Suche in Google Scholar
[44] A. E. Dubinov and D. Y. Kolotkov, “Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas,” Rev. Mod. Plasma Phys., vol. 2, p. 2, 2018. https://doi.org/10.1007/s41614-018-0014-9.Suche in Google Scholar
[45] H. Ikezi, “Experiments on ion-acoustic solitary waves,” Phys. Fluids, vol. 16, p. 1668, 1973. https://doi.org/10.1063/1.1694194.Suche in Google Scholar
[46] F. S. Mozer, R. Ergun, M. Temerin, C. Cattell, J. Dombeck, and J. Wygant, “New features of time domain electric-field structures in the auroral acceleration region,” Phys. Rev. Lett., vol. 79, p. 1281, 1997. https://doi.org/10.1103/physrevlett.79.1281.Suche in Google Scholar
[47] R. E. Ergun, C. W. Carlson, J. P. McFadden, et al.., “Debye-scale plasma structures associated with magnetic-field-aligned electric fields,” Phys. Rev. Lett., vol. 81, p. 826, 1998. https://doi.org/10.1103/physrevlett.81.826.Suche in Google Scholar
[48] G. Gustafsson, M. André, T. Carozzi, et al.., “First results of electric field and density observations by cluster EFW based on initial months of operation,” Ann. Geophys., vol. 19, p. 1219, 2001. https://doi.org/10.5194/angeo-19-1219-2001.Suche in Google Scholar
[49] V. M. Nakariakov and E. Verwichte, “Coronal waves and oscillations,” Living Rev. Sol. Phys., vol. 2, p. 3, 2005. https://doi.org/10.12942/lrsp-2005-3.Suche in Google Scholar
[50] J. R. Franz, P. M. Kintner, J. S. Pickett, and L. J. Chen, “Properties of small-amplitude electron phase-space holes observed by polar,” J. Geophys. Res. Space Phys., vol. 110, 2005. https://doi.org/10.1029/2005ja011095.Suche in Google Scholar
[51] V. M. Nakariakov, A. R. Inglis, I. V. Zimovets, et al.., “Oscillatory processes in solar flares,” Plasma Phys. Contr. Fusion, vol. 52, 2010, Art no. 124009. https://doi.org/10.1088/0741-3335/52/12/124009.Suche in Google Scholar
[52] V. M. Nakariakov, V. Pilipenko, B. Heilig, et al.., “Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding,” Space Sci. Rev., vol. 200, p. 75, 2016. https://doi.org/10.1007/s11214-015-0233-0.Suche in Google Scholar
[53] D. J. Pascoe, C. R. Goddard, G. Nisticò, S. Anfinogentov, and V. M. Nakariakov, “Damping profile of standing kink oscillations observed by SDO/AIA,” Astron. Astrophys., vol. 585, p. L6, 2016. https://doi.org/10.1051/0004-6361/201527835.Suche in Google Scholar
[54] M. A. Hellberg, T. K. Baluku, F. Verheest, and I. Kourakis, “Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions,” J. Plasma Phys., vol. 79, p. 1039, 2013. https://doi.org/10.1017/s0022377813001153.Suche in Google Scholar
[55] S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, “Existence domains of dust-acoustic solitons and supersolitons,” Phys. Plasmas, vol. 20, 2013, Art no. 083705. https://doi.org/10.1063/1.4818439.Suche in Google Scholar
[56] F. Verheest, M. A. Hellberg, and I. Kourakis, “Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons,” Phys. Rev. E, vol. 87, 2013, Art no. 043107. https://doi.org/10.1103/physreve.87.043107.Suche in Google Scholar
[57] F. Verheest, M. A. Hellberg, and I. Kourakis, “Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions,” Phys. Plasmas, vol. 20, 2013, Art no. 012302. https://doi.org/10.1063/1.4775085.Suche in Google Scholar
[58] F. Verheest, M. A. Hellberg, and I. Kourakis, “Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions,” Phys. Plasmas, vol. 20, 2013, Art no. 082309. https://doi.org/10.1063/1.4818888.Suche in Google Scholar
[59] C. P. Olivier, S. K. Maharaj, and R. Bharuthram, “Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion-and two electron species,” Phys. Plasmas, vol. 22, 2015, Art no. 082312. https://doi.org/10.1063/1.4928884.Suche in Google Scholar
[60] A. Paul, A. Bandyopadhyay, and K. P. Das, “Dust ion acoustic solitary structures in presence of nonthermally distributed electrons and positrons,” Phys. Plasmas, vol. 24, 2017, Art no. 013707. https://doi.org/10.1063/1.4975089.Suche in Google Scholar
[61] D. Debnath, A. Bandyopadhyay, and K. P. Das, “Ion acoustic solitary structures in a magnetized nonthermal dusty plasma,” Phys. Plasmas, vol. 25, 2018, Art no. 033704. https://doi.org/10.1063/1.5021127.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Theoretical research of the medical U-type optical fiber sensor covered by the gold nanoparticles
- Machine learning studies for the effects of probes and cavity on quantum synchronization
- Atomic, Molecular & Chemical Physics
- Semiclassical study on photodetachment of hydrogen negative ion in a harmonic potential confined by a quantum well
- Dynamical Systems & Nonlinear Phenomena
- One-dimensional spherical shock waves in an interstellar dusty gas clouds
- Free vibrations of nanobeams under non-ideal supports based on modified couple stress theory
- On the evolution of acceleration discontinuities in van der Waals dusty magnetogasdynamics
- Head-on collision of two ion-acoustic solitons in pair-ion plasmas with nonthermal electrons featuring Tsallis distribution
- Arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of non-thermal and isothermal electrons
Artikel in diesem Heft
- Frontmatter
- General
- Theoretical research of the medical U-type optical fiber sensor covered by the gold nanoparticles
- Machine learning studies for the effects of probes and cavity on quantum synchronization
- Atomic, Molecular & Chemical Physics
- Semiclassical study on photodetachment of hydrogen negative ion in a harmonic potential confined by a quantum well
- Dynamical Systems & Nonlinear Phenomena
- One-dimensional spherical shock waves in an interstellar dusty gas clouds
- Free vibrations of nanobeams under non-ideal supports based on modified couple stress theory
- On the evolution of acceleration discontinuities in van der Waals dusty magnetogasdynamics
- Head-on collision of two ion-acoustic solitons in pair-ion plasmas with nonthermal electrons featuring Tsallis distribution
- Arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of non-thermal and isothermal electrons