Startseite Structural, electronic, magnetic and mechanical properties of the full-Heusler compounds Ni2Mn(Ge,Sn) and Mn2NiGe
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural, electronic, magnetic and mechanical properties of the full-Heusler compounds Ni2Mn(Ge,Sn) and Mn2NiGe

  • Naima Asli , Fethallah Dahmane ORCID logo EMAIL logo , Mohamed Mokhtari , Chahrazed Zouaneb , Mohammed Batouche , Houari Khachai , Vipul Srivastava , S. H. Naqib , Y. Al-Douri , Abdelmadjid Bouhemadou und Rabah Khenata
Veröffentlicht/Copyright: 27. Mai 2021

Abstract

Mn-Ni based full-Heusler alloys belong to novel half-metallic compounds with a promising set of physical properties for applications as functional materials. Based on first principles calculations, the electronic structures, the magnetic and mechanical properties of Ni2Mn(Ge,Sn) and Mn2NiGe full-Heusler alloys have been investigated in detail. The results revealed that the Mn2NiGe with Hg2CuTi type structure is more stable; on the other hand, for Ni2Mn(Ge,Sn), the Cu2MnAl type structure is more stable. The Mn2NiGe alloys are found to be half-metallic with an integer value of total magnetic moment of 4 μB which makes them interesting materials in the field of spintronics. The Ni2Mn(Ge,Sn) alloys exhibit metallic character in both Hg2CuTi and Cu2MnAl type structures. The calculated B/G ratios for all the considered compounds Ni2Mn(Ge,Sn) and Mn2NiGe are greater than 1.75; therefore, these alloys are ductile, and the calculated Cauchy’s pressure is positive, which also classified these compounds as ductile materials.


Corresponding author: Fethallah Dahmane, Département de sciences de la matière, Centre Universitaire de Tissemsilt, Tissemsilt38000, Algeria; and Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara29000, Algeria, E-mail:

Funding source: The General Direction of Scientific Research and Technological Development (DGRSDT)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The Authors acknowledge the financial support of the General Direction of Scientific Research and Technological Development (DGRSDT).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. P. Rai, Sandeep, M. P. Ghimire, and R. K. Thapa, “Study of energy bands and magnetic properties of Co2CrSi Heusler alloy,” Bull. Mater. Sci., vol. 34, pp. 1219–1222, 2011. https://doi.org/10.1007/s12034-011-0233-y.Suche in Google Scholar

[2] D. Amari, M. Mokhtari, F. Dahmane, et al.., “A comparative study between Hg2CuTi and Cu2MnAl type structures for Zr2CoZ (Z = Al, Ga, In) Heusler alloys,” Chin. J. Phys., vol. 60, pp. 450–461, 2019. https://doi.org/10.1016/j.cjph.2019.05.024.Suche in Google Scholar

[3] K. M. Hossain, M. Zahid Hasan, and M. Lokman Ali, “Understanding the influences of Mg doping on the physical properties of SrMoO3 perovskite,” Results Phys., vol. 19, p. 103337, 2020. https://doi.org/10.1016/j.rinp.2020.103337.Suche in Google Scholar

[4] K. M. Hossain and Z. Hasan, “Effects of negative chemical pressure on the structural, mechanical, and electronic properties of molybdenum-doped strontium ferrite,” Mater. Today Commun., vol. 26, p. 101908, 2021. https://doi.org/10.1016/j.mtcomm.2020.101908.Suche in Google Scholar

[5] K. M. Hossain, S. K. Mitro, M. Anwar Hossain, J. Krishna Modak, M. Rasheduzzaman, and M. Zahid Hasan, “Influence of antimony on the structural, electronic, mechanical, and anisotropic properties of cubic barium stannate,” Mater. Today Commun., vol. 26, p. 101868, 2021. https://doi.org/10.1016/j.mtcomm.2020.101868.Suche in Google Scholar

[6] M. Z. Hasan, M. Rasheduzzaman, and K. Monower Hossain, “Pressure-dependent physical properties of cubic SrBO3 (B = Cr, Fe) perovskites investigated by density functional theory,” Chin. Phys. B, vol. 29, no. 12, p. 123101, 2020. https://doi.org/10.1088/1674-1056/abab7f.Suche in Google Scholar

[7] M. Rasheduzzaman, K. M. Hossain, S. K. Mitro, M. A. J. Hadi, J. K. Modak, and M. Z. Hasan, “Structural, mechanical, thermal, and optical properties of inverse-Heusler alloys Cr2CoZ (Z = Al, In): a first-principles investigation,” Phys. Lett., vol. 385, p. 126967, 2021. https://doi.org/10.1016/j.physleta.2020.126967.Suche in Google Scholar

[8] I. Zutic, J. Fabian, and S. D. Sharm, “Spintronics: fundamentals and applications,” Rev. Mod. Phys., vol. 76, p. 323, 2004.10.1103/RevModPhys.76.323Suche in Google Scholar

[9] A. Candan, G. Uğur, Z. Charifi, H. Baaziz, and M. R. Ellialtıoğlu, “Electronic structure and vibrational properties in cobalt-based full-Heusler compounds: a first principle study of Co2MnX (X=Si, Ge, Al, Ga),” J. Alloys Compd., vol. 560, pp. 215–222, 2013. https://doi.org/10.1016/j.jallcom.2013.01.102.Suche in Google Scholar

[10] N. Arıkan, A. İyigör, A. Candan, et al.., “Electronic and phonon properties of the full-Heusler alloys X2YAl (X = Co, Fe and Y = Cr, Sc): a density functional theory study,” J. Mater. Sci., vol. 49, pp. 4180–4190, 2014.10.1007/s10853-014-8113-7Suche in Google Scholar

[11] R. Masrour, A. Jabar, S. Labidi, et al.., “Study of structural, elastic, thermal, electronic and magnetic properties of heusler Mn2NiGe: an Ab initio calculations and Monte Carlo simulations,” Mater. Today Commun., vol. 26, p. 101772, 2021. https://doi.org/10.1016/j.mtcomm.2020.101772.Suche in Google Scholar

[12] M. E. Jamer, L. G. Marshall, G. E. Sterbinsky, L. H. Lewis, and D. Heiman, “Low-moment ferrimagnetic phase of the Heusler compound Cr2CoAl,” J. Magn. Magn Mater., vol. 394, pp. 32–36, 2015. https://doi.org/10.1016/j.jmmm.2015.06.020.Suche in Google Scholar

[13] Z. Addadi, B. Doumi, A. Mokaddem, et al.., “Electronic and ferromagnetic properties of 3d(V)-Doped (BaS) barium sulfide,” J. Supercond. Nov. Magn., vol. 30, pp. 917–923, 2017. https://doi.org/10.1007/s10948-016-3894-3.Suche in Google Scholar

[14] F. Dahmane, A. Tadjer, B. Doumi, D. Mesri, H. Aourag, and A. Sayede, “First principles study of the electronic structures and magnetic properties of transition metal-doped cubic indium nitride,” Mater. Sci. Semicond. Process., vol. 21, pp. 66–73, 2014. https://doi.org/10.1016/j.mssp.2014.01.037.Suche in Google Scholar

[15] F. Dahmane, D. Mesri, A. Tadjer, et al.., “Electronic structure, magnetism and stability of Co2CrX (X =Al, Ga, In) ab initio study,” Mod. Phys. Lett. B, vol. 30, p. 1550265, 2016. https://doi.org/10.1142/s0217984915502656.Suche in Google Scholar

[16] K. A. Kilian and R. H. Victora, “Electronic structure of Ni2MnIn for use in spin injection,” J. Appl. Phys., vol. 87, p. 7064, 2000. https://doi.org/10.1063/1.372932.Suche in Google Scholar

[17] B. Hamri, B. Abbar, A. Hamri, O. Baraka, A. Hallouche, and A. Zaoui, “Electronic structure and mechanical properties of X2MnSn (X = Cu, Ni, Pd) under hydrostatic pressure: GGA + U calculations,” Comput. Condens. Matter, vol. 3, pp. 14–20, 2015. https://doi.org/10.1016/j.cocom.2014.12.003.Suche in Google Scholar

[18] F. Dahmane, D. Mesri, B. Doumi, et al.., “Ab initio investigation of half-metallic behaviour in the full-heusler X2MnGe (X = Sc, Fe, Ni),” J. Supercond. Nov. Magnetism, vol. 28, no. 7, pp. 2063–2069, 2015. https://doi.org/10.1007/s10948-015-2994-9.Suche in Google Scholar

[19] H. Rached, D. Rached, R. Khenata, A. H. Reshak, and M. Rabah, “First-principles calculations of structural, elastic and electronic properties of Ni2MnZ (Z = Al, Ga and In) Heusler alloys,” Phys. Status Solidi B, vol. 246, p. 1580, 2009. https://doi.org/10.1002/pssb.200844400.Suche in Google Scholar

[20] K. A. Kilian and R. H. Victora, “Electronic structure of the Ni/sub 2/MnIn/InAs [100] interface relevant to spin injection,” IEEE Trans. Magn., vol. 37, p. 1976, 2001. https://doi.org/10.1109/20.951026.Suche in Google Scholar

[21] O. Benguerine, Z. Nabi, B. Benichou, et al.., “Structural, elastic, electronic and magnetic properties of Ni2MnSb, Ni2MnSn and Ni2MnSb0.5Sn0.5 magnetic shape memory alloys,” Rev. Mexic. Fisica, vol. 66, pp. 121–126, 2020. https://doi.org/10.31349/revmexfis.66.121.Suche in Google Scholar

[22] J. Li, Z. Zhang, Y. Sun, et al.., “The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys: a quasi-hormonic Debye model and first principles study,” Phys. B Condens. Matter, vol. 409, pp. 35–41, 2013. https://doi.org/10.1016/j.physb.2012.10.006.Suche in Google Scholar

[23] H.-L. Yan, H.-X. Liu, M.-J. Zhang, et al.., “Electronic origin of the main-group element dependences of elastic moduli in the Ni2Mn-based magnetic shape memory alloys,” J. Phys. Chem. Solid., vol. 148, p. 109671, 2021. https://doi.org/10.1016/j.jpcs.2020.109671.Suche in Google Scholar

[24] S. E. Kulkova, S. S. Kulkov, and A. V. Subashiev, “Ab-initio investigation of electronic and magnetic properties of Heusler alloys,” Comput. Mater. Sci., vol. 36, p. 249, 2006. https://doi.org/10.1016/j.commatsci.2004.11.019.Suche in Google Scholar

[25] H. Luo, F. Meng, G. Liu, et al.., “Electronic structure and possible martensitic transformation in Mn2NiGe and Ni2MnGe,” Intermetallics, vol. 38, pp. 139–143, 2013. https://doi.org/10.1016/j.intermet.2013.03.004.Suche in Google Scholar

[26] H. Luo, G. Liu, Z. Feng, et al.., “Effect of the main-group elements on the electronic structures and magnetic properties of Heusler alloys Mn2NiZ (Z=In, Sn, Sb),” J. Magn. Magn Mater., vol. 321, pp. 4063–4066, 2009. https://doi.org/10.1016/j.jmmm.2009.08.002.Suche in Google Scholar

[27] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Hvasnicka, and J. Luitz, WIEN2k, an Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties, Austria, Karlheinz Schwarz, Techn. Universit Wien, 2001.Suche in Google Scholar

[28] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, p. 3865, 1996. https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

[29] F. D. Murnaghan, “The compressibility of media under extreme pressures,” Proc. Natl. Acad. Sci. U.S.A., vol. 30, p. 5390, 1944.10.1073/pnas.30.9.244Suche in Google Scholar PubMed PubMed Central

[30] H. Luo, Z. Zhu, G. Liu, et al.., “Prediction of half-metallic properties for the Heusler alloys Mn2CrZ (Z=Al, Ga, Si, Ge, Sb): a first-principles study,” J. Magn. Magn Mater., vol. 320, pp. 421–428, 2008. https://doi.org/10.1016/j.jmmm.2007.06.021.Suche in Google Scholar

[31] N. Xing, Y. Gong, W. Zhang, J. Dong, and H. Li, “First-principle prediction of half-metallic properties for the Heusler alloys V2YSb (Y=Cr, Mn, Fe, Co),” Comput. Mater. Sci., vol. 45, p. 489, 2009. https://doi.org/10.1016/j.commatsci.2008.11.008.Suche in Google Scholar

[32] L. Jia, Z. Zhang, Y. Sun, et al.., “The thermodynamic, electronic and magnetic properties of Ni2MnX (X=Ge, Sn, Sb) Heusler alloys: a quasihormonic Debye model and first principles study,” Physica B, vol. 409, pp. 35–41, 2013.10.1016/j.physb.2012.10.006Suche in Google Scholar

[33] Y. Y. Cherkashin, Y. I. Gladyshevskiy, P. I. Kripyakevich, and Y. B. Kuz’ma, J. Inorg. Chem. USSR, vol. 3, p. 650, 1958.Suche in Google Scholar

[34] V. A. Oksenenko, L. N. Trofimova, Y. N. Petrov, Y. V. Kudryavtsev, J. Dubowik, and Y. P. Lee, “Structural dependence of some physical properties of the Ni2MnGe Heusler alloy films,” J. Appl. Phys., vol. 99, p. 063902, 2006. https://doi.org/10.1063/1.2180434.Suche in Google Scholar

[35] S. Aǧduc and G. Gokoǧlu, “Ab initio lattice dynamics of Ni2MnX (X = Sn, Sb) magnetic shape memory alloys,” J. Alloys Compd., vol. 9, p. 511, 2012.10.1016/j.jallcom.2011.08.092Suche in Google Scholar

[36] Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, H. Xian-feng, X.-J. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B, vol. 76, p. 054115, 2007.10.1103/PhysRevB.76.054115Suche in Google Scholar

[37] S. Takeshi, “Nuclear magnetic resonance in Heusler Alloys: Ni2MnSn, Co2MnSn and Ni2MnSb,” J. Phys. Soc. Japan, vol. 28, p. 313, 1970.10.1143/JPSJ.28.313Suche in Google Scholar

[38] S. Jha, H. M. Seyoum, M. Demarco, et al.., “Site and probe dependence of hyperfine magnetic field in L21 Heusler alloys X2MnZ (X=Ni, Cu, Rh, Pd and Z=Ga, Ge, In, Sn, Pb),” Hyperfine Interact., vol. 16, p. 685, 1983. https://doi.org/10.1007/bf02147342.Suche in Google Scholar

[39] A. Ayuela, J. Enkovaara, K. Ullakko, and R. M. Nieminen, “Structural properties of magnetic Heusler alloys,” J. Phys. Condens. Matter, vol. 11, p. 2017, 1999. https://doi.org/10.1088/0953-8984/11/8/014.Suche in Google Scholar

[40] L. Spina, Y.-Z. Jia, B. Ducourant, M. Tillard, and C. Z. Belin, “Compositional and structural variations in the ternary system Li – Al – Si,” Kristallografiâ, vol. 218, p. 740, 2003. https://doi.org/10.1524/zkri.218.11.740.20305.Suche in Google Scholar

[41] H. Nowotny and F. Holub, “Untersuchungen an metallischen Systemen mit Flu spatphasen,” Monatsh. Chem., vol. 91, p. 877, 1960. https://doi.org/10.1007/bf00929560.Suche in Google Scholar

[42] K. Refson, P. R. Tulip, and S. J. Clark, “Variational density-functional perturbation theory for dielectrics and lattice dynamics,” Phys. Rev. B, vol. 73, p. 155114, 2006. https://doi.org/10.1103/physrevb.73.155114.Suche in Google Scholar

[43] M. D. Segall, P. J. Lindan, M. A. Probert, et al.., “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys. Condens. Matter, vol. 14, p. 2717, 2002. https://doi.org/10.1088/0953-8984/14/11/301.Suche in Google Scholar

[44] R. Vali, “Phonons and heat capacity of LaAlO3,” Comput. Mater. Sci., vol. 44, pp. 779–782, 2008. https://doi.org/10.1016/j.commatsci.2008.05.029.Suche in Google Scholar

[45] R. Vali, “Structural phases of SrHfO3,” Solid State Commun., vol. 148, pp. 29–31, 2008. https://doi.org/10.1016/j.ssc.2008.07.018.Suche in Google Scholar

[46] R. Vali, “Lattice dynamics of cubic SrZrO3,” J. Phys. Chem. Solid., vol. 69, pp. 876–879, 2008. https://doi.org/10.1016/j.jpcs.2007.09.022.Suche in Google Scholar

[47] D. V. Suetin and I. R. Shein, “Electronic structure, mechanical and dynamical stability of hexagonal subcarbides M2C (M = Tc, Ru, Rh, Pd, Re, Os, Ir, and Pt): ab initio calculations,” Phys. Solid State, vol. 60, pp. 213–224, 2018. https://doi.org/10.1134/s1063783418020282.Suche in Google Scholar

[48] R. A. de Groot, F. M. Mueller, P. G. V. Engen, and K. H. Buschow, “New class of materials: half-metallic ferromagnets,” Phys. Rev. Lett., vol. 50, p. 2024, 1983. https://doi.org/10.1103/physrevlett.50.2024.Suche in Google Scholar

[49] Q.-L. Fang, X.-M. Zhao, J.-M. Zhang, and K.-W. Xu, “Magnetic properties and half-metallic in bulk and (001) surface of Ti2MnAl Heusler alloy with Hg2CuTi-type structure,” Thin Solid Films, vol. 558, pp. 241–246, 2014. https://doi.org/10.1016/j.tsf.2014.03.007.Suche in Google Scholar

[50] C. M. Fang, G. A. de Wijs, and R. A. de Groot, “Spin-polarization in half-metals (invited),” J. Appl. Phys., vol. 91, p. 8340, 2002. https://doi.org/10.1063/1.1452238.Suche in Google Scholar

[51] G. D. Liu, X. F. Dai, H. Y. Liu, et al.., “Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: Structural, electronic, and magnetic properties,” Phys. Rev. B, vol. 77, p. 014424, 2008. https://doi.org/10.1103/physrevb.77.014424.Suche in Google Scholar

[52] S. Skaftouros, K. özdoğan, E. Şasıoğlu, and I. Galanakis, “Generalized Slater-Pauling rule for the inverse Heusler compounds,” Phys. Rev. B: Condens. Matter Mater. Phys., vol. 87, p. 024420, 2013. https://doi.org/10.1103/physrevb.87.024420.Suche in Google Scholar

[53] H. Luo, Y. Xin, B. Liu, et al.., “Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni),” J. Alloys Compd., vol. 665, pp. 180–185, 2016. https://doi.org/10.1016/j.jallcom.2015.11.207.Suche in Google Scholar

[54] M. Pugaczowa-Michalska, “Electronic structure, equilibrium and magnetic properties of Ni2MnGe: ab initio study,” J. Alloys Compd., vol. 427, pp. 54–60, 2007. https://doi.org/10.1016/j.jallcom.2006.03.036.Suche in Google Scholar

[55] E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, “First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb,” Phys. Rev. B, vol. 70, p. 024427, 2004.10.1103/PhysRevB.70.024427Suche in Google Scholar

[56] T. Charpin, A Package for Calculating Elastic Tensors of Cubic Phases Using WIEN, Paris, France, Laboratory of Geometrix F-75252, 2001.Suche in Google Scholar

[57] R. Ullah, M. A. Ali, G. Murtaza, A. Mahmood, and S. M. Ramay, “An investigation of structural, elastic, mechanical, electronic, magnetic and thermoelectric properties of ferromagnetic half metallic EuCrO3,” Mater. Sci. Semicond. Process., vol. 122, p. 105487, 2021. https://doi.org/10.1016/j.mssp.2020.105487.Suche in Google Scholar

[58] R. B. Behram, M. A. Iqbal, S. M. Alay-e-Abbas, et al.., “Theoretical investigation of mechanical, optoelectronic and thermoelectric properties of BiGaO3 and BiInO3 compounds,” Mater. Sci. Semicond. Process., vol. 41, p. 297, 2016. https://doi.org/10.1016/j.mssp.2015.09.010.Suche in Google Scholar

[59] S. A. Khandy and D. C. Gupta, “Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite,” Mater. Chem. Phys., vol. 198, p. 380, 2017. https://doi.org/10.1016/j.matchemphys.2017.06.033.Suche in Google Scholar

[60] A. Bouhemadou and R. Khenata, “Ab initio study of structural phase stability and elastic properties of ScSb and YSb under pressure effect,” Phys. Lett. A, vol. 362, p. 476, 2007. https://doi.org/10.1016/j.physleta.2006.10.054.Suche in Google Scholar

[61] V. Kanchana, G. Vaitheeswaran, and A. Svane, “Calculated structural, elastic and electronic properties of SrCl2,” J. Alloys Compd., vol. 455, p. 480, 2008. https://doi.org/10.1016/j.jallcom.2007.01.163.Suche in Google Scholar

[62] R. Khenata, A. Bouhemadou, M. Hichour, H. Baltache, D. Rached, and M. Rérat, “Elastic and optical properties of BeS, BeSe and BeTe under pressure,” Solid State Electron., vol. 50, p. 1382, 2006. https://doi.org/10.1016/j.sse.2006.06.019.Suche in Google Scholar

[63] A. Bouhemadou, R. Khenata, and M. Maamache, “Structural phase stability and elastic properties of lanthanum monochalcogenides at high pressure,” J. Mol. Struct.: THEOCHEM, vol. 777, p. 5, 2006. https://doi.org/10.1016/j.theochem.2006.08.031.Suche in Google Scholar

[64] S. Q. Wang and H. Q. Ye, “First-principles study on elastic properties and phase stability of III–V compounds,” Phys. Status Solidi B, vol. 240, p. 48, 2003. https://doi.org/10.1002/pssb.200301861.Suche in Google Scholar

[65] W. Voigt, “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper,” Ann. Phys. Chem., vol. 274, p. 573, 1889. https://doi.org/10.1002/andp.18892741206.Suche in Google Scholar

[66] A. Reuss, “Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech., vol. 9, p. 49, 1929. https://doi.org/10.1002/zamm.19290090104.Suche in Google Scholar

[67] R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc. A, vol. 65, p. 349, 1952. https://doi.org/10.1088/0370-1298/65/5/307.Suche in Google Scholar

[68] J. Wang, S. Yip, S. R. Phillpot, and D. Wolf, “Crystal instabilities at finite strain,” Phys. Rev. Lett., vol. 71, p. 4182, 1993. https://doi.org/10.1103/physrevlett.71.4182.Suche in Google Scholar

[69] S. F. Pugh, “XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Philos. Mag., vol. 45, p. 823, 1954. https://doi.org/10.1080/14786440808520496.Suche in Google Scholar

[70] V. Kanchana, G. Vaitheeswaran, Y. Ma, Y. Xie, A. Svane, and O. Eriksson, “Density functional study of elastic and vibrational properties of the Heusler-type alloys Fe2VAl and Fe2VGa,” Phys. Rev. B, vol. 80, p. 125108, 2009. https://doi.org/10.1103/physrevb.80.125108.Suche in Google Scholar

[71] D. G. Pettifor, “Theoretical predictions of structure and related properties of intermetallics,” Mater. Sci. Technol., vol. 8, p. 345, 1992.10.1179/mst.1992.8.4.345Suche in Google Scholar

[72] I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, I. N. Frantsevich, Ed., Kiev, Naukuva Dumka, 1983, pp. 60–180.Suche in Google Scholar

[73] J. Haines, J. M. Leger, and G. Bocquillon, “Synthesis and design of superhard materials,” Annu. Rev. Mater. Res., vol. 31, p. 10, 2001. https://doi.org/10.1146/annurev.matsci.31.1.1.Suche in Google Scholar

[74] R. E. Newnham, Properties of Materials and Anisotropy, Symmetry, Structure, New York, NY, USA, Oxford University Press, 2005.10.1093/oso/9780198520757.003.0005Suche in Google Scholar

Received: 2020-11-30
Revised: 2021-05-01
Accepted: 2021-05-09
Published Online: 2021-05-27
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0329/html?lang=de
Button zum nach oben scrollen