Abstract
Term energies, oscillator strengths, transition probabilities, and transition wavelengths among the low-lying states of (1s2)2s22p2, 2s22p3p, 2s2p3, 2s22p3s, and 2s22p3d 1,3,5L L = S, P, D, F in N+, F3+, and Ne4+ ions were calculated by using the multiconfiguration Rayleigh-Ritz variation method and restricted variation method. The transition oscillator strengths and transition probabilities for the electric dipole transitions are both given in length and velocity gauges. Deviations between these two gauge values are discussed. The calculated atomic parameters are in good agreement with the observed experimental results and other theoretical data. Furthermore, the uncertainty of each electric dipole transition is estimated. Several uncertainties of transition parameters are improved when comparing with values from national institute of standards and technology NIST database. Atomic parameters presented in this paper should be useful for identifying the levels as well as for precise spectral modeling in astrophysical and laboratory plasmas in the future work.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11604284, 51506184
Funding source: Six Talent Peaks Project of Jiangsu Province
Award Identifier / Grant number: JY-105
Funding source: QinLan project of Jiangsu Province of China
Funding source: the State Key Laboratory Open Fund of Millimeter Waves of Southeast University
Award Identifier / Grant number: K202105
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was supported by the National Natural Science Foundation of China, under grant nos. 11604284 and 51506184. Yan Sun and DongDong Liu was supported by the Six Talent Peaks project of Jiangsu Province of China under grant no. JY-105, QinLan project of Jiangsu Province of China, and the State Key Laboratory Open Fund of Millimeter Waves of Southeast University under grant no. K202105.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] J. J. Mao, J. S. Kaastra, M. Mehdipour, A. J. J. Raassen, L. Y. Gu, and J. M. Miller, “Density diagnostics of ionized outflows in active galactic nuclei,” Astron. Astrophys., vol. 607, p. A100, 2017, https://doi.org/10.1051/0004-6361/201731378.10.1051/0004-6361/201731378Suche in Google Scholar
[2] O. Zatsarinny, T. W. Gorczyca, K. T. Korista, N. R. Badnell, and D. W. Savin, “Dielectronic recombination data for dynamic finite-density plasmas,” Astron. Astrophys., vol. 417, p. 1173, 2004. https://doi.org/10.1051/0004-6361:20034174.10.1051/0004-6361:20034174Suche in Google Scholar
[3] B. C. Faecett, “Calculated wavelengths, oscillator strengths, and energy levels for allowed 2–2 and 2–3 transitions for ions in the C-like isoelectronic sequence between F IV and Ni XXIII,” Atomic Data Nucl. Data Tables, vol. 37, p. 367, 1987. https://doi.org/10.1016/0092-640X(87)90024-6.10.1016/0092-640X(87)90024-6Suche in Google Scholar
[4] B. C. Faecett, “Oscillator strengths of allowed transitions for C I, N II, and O III,” Atomic Data Nucl. Data Tables, vol. 37 p. 411, 1987. https://doi.org/10.1016/0092-640X(87)90025-8.10.1016/0092-640X(87)90025-8Suche in Google Scholar
[5] R. D. Cowan and D. Robert. “Cowan’s atomic structure code[Online].” Available: https://www.tcd.ie/Physics/people/Cormac.McGuinness/Cowan/.Suche in Google Scholar
[6] R. D. Cowan, Theory of Atomic Structure and Spectra, Berkeley, California, USA, University of California Press, 1981.10.1525/9780520906150Suche in Google Scholar
[7] D. Luo and A. K. Pradhan, “Atomic data for opacity calculations. XI. The carbon isoelectronic sequence,” J. Physiol. Biochem., vol. 22, p. 3377, 1989, https://doi.org/10.1088/0953-4075/22/21/005.10.1088/0953-4075/22/21/005Suche in Google Scholar
[8] C. Mendoza, C. J. Zeippen, and P. J. Storey, “Atomic data from the IRON Project,” Astron. AstroPhys. Suppl., vol. 135, p. 159, 1999, https://doi.org/10.1051/aas:1999445.10.1051/aas:1999445Suche in Google Scholar
[9] W. Eissner, M. Jones, and H. Nussbaumer, “Techniques for the calculation of atomic structures and radiative data including relativistic corrections,” Comput. Phys. Commun., vol. 8, p. 27, 1974, https://doi.org/10.1016/0010-4655(74)90019-8.10.1016/0010-4655(74)90019-8Suche in Google Scholar
[10] E. S. Conlon, F. P. Keenan, and K. M. Aggarwal, “Electron impact excitation rates for transitions in carbon-like F IV, Na VI, AI VIII, P X, S XI, CI XII, Ar XIII and K XIV,” Phys. Scripta, vol. 45, p. 309, 1992, https://doi.org/10.1088/0031-8949/45/4/004.10.1088/0031-8949/45/4/004Suche in Google Scholar
[11] D. C. Griffin and N. R. Badnell, “Electron-impact excitation of Ne4+,” Phys. Rev. A, vol. 33, p. 4389, 2000, https://doi.org/10.1088/0953-4075/33/20/315.10.1088/0953-4075/33/20/315Suche in Google Scholar
[12] K.M. Aggarwal, “Oscillator Strengths for Transitions in C‐like Ne, Mg, Si, and S Ions,” Astrophys. J. Suppl., vol. 118, p. 589, 1998, https://doi.org/10.1086/313147.10.1086/313147Suche in Google Scholar
[13] K. M. Aggarwal, F. P. Keenan, and A. Z. Msezane, “Oscillator strengths for transitions in C‐like ions between F iv and Ar xiii,” Astrophys. J. Suppl., vol. 136, p. 763, 2001, https://doi.org/10.1086/321800.10.1086/321800Suche in Google Scholar
[14] A. Hibbert, “CIV3 – A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths,” Comput. Phys. Commun., vol. 9, p. 141, 1975, https://doi.org/10.1016/0010-46557590103-4.10.1016/0010-4655(75)90103-4Suche in Google Scholar
[15] C. F. Fischer and G. Tachiev, “Breit–Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences,” Atomic Data Nucl. Data Tables, vol. 87, p. 1, 2004. https://doi.org/10.1016/j.adt.2004.02.001.10.1016/j.adt.2004.02.001Suche in Google Scholar
[16] G. Tachiev and C. F. Fischer, “Breit-Pauli energy levels and transition rates for the carbonlike sequence,” Can. J. Phys., vol. 79, p. 955, 2001, https://doi.org/10.1139/p01-059.10.1139/p01-059Suche in Google Scholar
[17] D. G. Ellis, “Ultraviolet transition probabilities in N ii,” Phys. Rev. A, vol. 47, p. 161, 1993, https://doi.org/10.1103/physreva.47.161.10.1103/PhysRevA.47.161Suche in Google Scholar
[18] C. F. Fischer, “The MCHF atomic-structure package,” Comput. Phys. Commun., vol. 64, p. 369, 1991. https://doi.org/10.1016/0010-4655(91)90133-6.10.1016/0010-4655(91)90133-6Suche in Google Scholar
[19] P. Jönsson and J. Bieroń, “Relativistic configuration interaction calculations of energy levels, isotope shifts, hyperfine structures, and transition rates in the 2s22p2-2s2p3transition array for the carbon-like sequence,” J. Physiol. Biochem., vol. 43, p. 074023, 2010, https://doi.org/10.1088/0953-4075/43/7/074023.10.1088/0953-4075/43/7/074023Suche in Google Scholar
[20] P. Jönsson, P. Rynkun, and G. Gaigalas, “Energies, E1, M1, and E2 transition rates, hyperfine structures, and Landé factors for states of the 2s22p2, 2s2p3, and 2p4 configurations in carbon-like ions between F IV and Ni XXIII,” Atomic Data Nucl. Data Tables, vol. 97, p. 648, 2011, https://doi.org/10.1016/j.adt.2011.05.001.10.1016/j.adt.2011.05.001Suche in Google Scholar
[21] C. Nazé, S. Verdebout, P. Rynkun, G. Gaigalas, M. Godefroid, and P. Jönsson, “Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations,” Atomic Data Nucl. Data Tables, vol. 100, p. 1197, 2014, https://doi.org/10.1016/j.adt.2014.02.004.10.1016/j.adt.2014.02.004Suche in Google Scholar
[22] P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, New York, Springer, 2007.10.1007/978-0-387-35069-1Suche in Google Scholar
[23] C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson, and G. Gaigalas, “Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions,” J. Phys. B Atom. Mol. Opt. Phys., vol. 49, p. 182004, 2016, https://doi.org/10.1088/0953-4075/49/18/182004.10.1088/0953-4075/49/18/182004Suche in Google Scholar
[24] A. Al. Modlej, R. A. B. Alraddadi, and N. B. Nessib, “Energy levels and oscillator strengths for carbon isoelectronic sequence from C I to Ne V,” Eur. Phys. J. Plus, vol. 133, p. 379, 2018. https://doi.org/10.1140/epjp/i2018-12192-9.10.1140/epjp/i2018-12192-9Suche in Google Scholar
[25] N. Alonizan, R. Qindeel, and N. B. Nessib, “Atomic structure calculations for neutral oxygen,” Int. J. Spectrosc., vol. 2016, p. 1697561, 2016. http://doi.org/10.1103/PhysRevA.92.023401.10.1155/2016/1697561Suche in Google Scholar
[26] A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy, Cambridge, UK, Cambridge University Press, 2011.10.1017/CBO9780511975349Suche in Google Scholar
[27] P. Beiersdorfer, E. Träbert, J. K. Lepson, N. S. Brickhouse, and L. Golub, “High-resolution laboratory measurements of coronal lines in the 198-218 Å region,” Astrophys. J., vol. 788, p. 25, 2014, https://doi.org/10.1088/0004-637x/788/1/25.10.1088/0004-637X/788/1/25Suche in Google Scholar
[28] J. M. Bizau, D. Cubaynes, S. Guilbaud, et al.., “K-shell photoionization of O + and O 2 + ions: Experiment and theory,” Phys. Rev. A, vol. 92, p. 023401, 2015. http://doi.org/10.1103/PhysRevA.92.023401.10.1103/PhysRevA.92.023401Suche in Google Scholar
[29] A. Kramida, Yu. Ralchenko, and J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.7.1), Gaithersburg, MD, National Institute of Standards and Technology, 2019 [Online]. Available at: https://physics.nist.gov/asd [2020, July 14].Suche in Google Scholar
[30] K. P. Dere, G. Del. Zanna, P. R. Young, E. Landi, and R. Sutherland, “Chianti – an atomic database for emission lines. Paper 15, version 9.0 improvements for the X-ray satellite lines,” Astrophys. J. Suppl., vol. 241, p. 2, 2019, https://doi.org/10.3847/1538-4365/ab05cf.10.3847/1538-4365/ab05cfSuche in Google Scholar
[31] Y. Sun, F. Hu, C. C. Sang, et al., “Energy levels and transition probabilities from the Rayleigh-Ritz variation method: C I and O III,” J. Quant. Spectrosc. Radiat. Transf., vol. 217, p. 388, 2018.10.1016/j.jqsrt.2018.06.018Suche in Google Scholar
[32] H. Y. Yang and K. T. Chung, “Energy, fine-structure, and hyperfine-structure studies of the core-excited states 1s2s2p2 (5P) and 1s2p3 (5S) for Be-like systems,” Phys. Rev. A, vol. 51, p. 3621, 1995.10.1103/PhysRevA.51.3621Suche in Google Scholar
[33] Y. Sun, D. D. Liu, M. F. Mei, et al., “Energies, fine structures, and transitions of the core-excited sextet states 6Se,o(n) and 6Pe,o(n) (n=1-5) of B-like ions,” J. Quant. Spectrosc. Radiat. Transf., vol. 167, p. 145, 2015.10.1016/j.jqsrt.2015.08.008Suche in Google Scholar
[34] Y. Sun, F. Chen, L. Zhuo, and B. C. Gou, “Energies, fine structures, and radiative lifetimes for the multiexcited quartet states of B-like oxygen,” Int. J. Quant. Chem., vol. 112, p. 1114, 2012, https://doi.org/10.1002/qua.23094.10.1002/qua.23094Suche in Google Scholar
[35] Y. Sun, C. C. Sang, F. Hu, et al., “Rydberg series for quartet states of Li-like sulfur ion,” J. Quant. Spectrosc. Radiat. Transf., vol. 187, p. 30, 2017.10.1016/j.jqsrt.2016.09.006Suche in Google Scholar
[36] B. F. Davis and K. T. Chung, “Saddle-point complex-rotation method for the(1s2s2s)2Sresonance in He−, Li I, Be II, and B III,” Phys. Rev. A, vol. 29, p. 1878, 1984, https://doi.org/10.1103/physreva.29.1878.10.1103/PhysRevA.29.1878Suche in Google Scholar
[37] Y. Sun, F. Chen, and B. C. Gou, “Energy levels, Auger branching ratios, and radiative rates of the core-excited states of B-like carbon,” J. Chem. Phys., vol. 135, p. 124309, 2011, https://doi.org/10.1063/1.3643334.10.1063/1.3643334Suche in Google Scholar
[38] G.W. F. Drake, “Quantum electrodynamic effects in few-electron atomic systems,” Adv. At. Mol. Phys., vol. 18, p. 399, 1982, https://doi.org/10.1016/s0065-21990860246-8.10.1016/S0065-2199(08)60246-8Suche in Google Scholar
[39] K. T. Chung, X. W. Zhu, and Z. W. Wang, “Ionization potential for ground states of berylliumlike systems,” Phys. Rev. A, vol. 47, p. 1740, 1993, https://doi.org/10.1103/physreva.47.1740.10.1103/PhysRevA.47.1740Suche in Google Scholar
[40] B. Lin, H. G. Berry, T. Shibata, et al., “1s2s2p23s 6P – 1s2p33s 6So Transitions in O IV,” Phys. Rev., vol. 67, p. 062507, 2003, https://doi.org/10.1103/physreva.67.062507.10.1103/PhysRevA.67.062507Suche in Google Scholar
[41] W. C. Martin and W. L. Wiese, “Atomic, molecular, and optical physics handbook (version 2.2).” Gaithersburg, MD, National Institute of Standards and Technology, 2002. Available: https://www.nist.gov/pml/atomic-spectroscopy-compendium-basic-ideas-notation-data-and-formulas.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Energy levels and transition probabilities of N+, F3+, and Ne4+ ions
- Dynamical Systems & Nonlinear Phenomena
- Genetic algorithm (GA)–based delay feedback control of chaotic behavior in the voltage mode controlled direct current (DC) drive system
- Time-delayed predator–prey interaction with the benefit of antipredation response in presence of refuge
- Gravitation & Cosmology
- Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ2 minimization
- Solid State Physics & Materials Science
- Thermal conversion of CBD grown ZnS thin films to ZnO
- Studies on birefringence, order parameter and image analysis of liquid crystalline p-n butyloxy/butyl benzoic acid with dispersed ZnO nanoparticles
Artikel in diesem Heft
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Energy levels and transition probabilities of N+, F3+, and Ne4+ ions
- Dynamical Systems & Nonlinear Phenomena
- Genetic algorithm (GA)–based delay feedback control of chaotic behavior in the voltage mode controlled direct current (DC) drive system
- Time-delayed predator–prey interaction with the benefit of antipredation response in presence of refuge
- Gravitation & Cosmology
- Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ2 minimization
- Solid State Physics & Materials Science
- Thermal conversion of CBD grown ZnS thin films to ZnO
- Studies on birefringence, order parameter and image analysis of liquid crystalline p-n butyloxy/butyl benzoic acid with dispersed ZnO nanoparticles