Studies on birefringence, order parameter and image analysis of liquid crystalline p-n butyloxy/butyl benzoic acid with dispersed ZnO nanoparticles
-
P. Jayaprada
, B. T. P. Madhav
, K. Krishna Reddy
Abstract
ZnO nanoparticles (nps) have wide range of applications and improve the optical parameters of molecules of soft liquid crystalline (LC) materials. The present paper mainly discusses the optical studies on LC materials regarding p-n-butyloxybenzoic acid (4oba) and p-n-butylbenzoic (4ba) compound along with homogeneous dispersion of ZnO nps in lower weight concentration, i.e., 1, 1.5, 2 and 2.5 wt%. The existence and size of ZnO nps in LC compounds are well determined through spectroscopic techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The temperatures of LC compounds and phase transitions are determined by using polarizing optical microscopy (POM) and differential scanning calorimetry (DSC) which is found to decrease with increasing concentration of dispersed ZnO nps. Image enhancement with visual quality matrix method is used to improve the quality of the image. Specially designed wedge-shaped modified spectrometer is used to determine the refractive indices with different wavelengths (460, 500, 570 and 635 nm). The refractive indices measured are fitted with two and three coefficient Cauchy model. Further, the order parameter S of the molecules of 4ba and 4oba with dispersed ZnO nps are determined by molecular field models namely Kuczynski, Vuks and effective geometry model, respectively. From the data, it is found that the values of birefringence (δn) and order parameter (S) of the molecules of 4oba and 4ba are enhanced with the dispersion of ZnO nps with increasing weight concentrations in the stabilized nematic thermal region.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Role of the funding sources: DST through Fund for Improvement of S&T Infrastructure (FIST) grant of SR/FST/ET-II/2019/450 and KLEF Internal funding project File no. KLEF/IF/SEP/2019/ 002.
Conflict of interest: The authors declare that there is no conflict of interest regarding the publication of this paper.
References
[1] T. Kato, N. Mizoshita, and K. Kishimoto, “Functional liquid‐crystalline assemblies: self‐organized soft materials,” Angew. Chem. Int. Ed., vol. 45, pp. 38–68, 2006. https://doi.org/10.1002/anie.200501384.Search in Google Scholar PubMed
[2] J. W. Goodby, I. M. Saez, S. J. Cowling, et al.., “Transmission and amplification of information and properties in nanostructured liquid crystals,” Angew. Chem. Int. Ed., vol. 47, pp. 2754–2787, 2008. https://doi.org/10.1002/anie.200701111.Search in Google Scholar PubMed
[3] C. Tschiersle, “Liquid crystal engineering – new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering,” Chem. Soc. Rev., vol. 36, pp. 1930–1970, 2007. https://doi.org/10.1039/B615517K.Search in Google Scholar
[4] H. Eskalen, S. Ozgan, U. Alver, and S. Kerli, “Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles,” Acta Phys. Pol. A, vol. 127, pp. 756–760, 2015. https://doi.org/10.12693/aphyspola.127.756.Search in Google Scholar
[5] L. Dolgov, O. Yaroshchuk, and M. Lebovka, “Effect of electro-optical memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst., vol. 496, pp. 212–229, 2008. https://doi.org/10.1080/15421400802451816.Search in Google Scholar
[6] K. K. Vardanyan, E. D. Palazzo, and R. D. Walton, “Nematic nanocomposites with enhanced optical birefringence,” Liq. Cryst., vol. 38, pp. 709–715, 2011. https://doi.org/10.1080/02678292.2011.569760.Search in Google Scholar
[7] H. Eskalen, S. Ozan, U. Alver, and S. Kerl, “Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles,” Acta Phys. Pol. A, vol. 127, no. 3, p. 756, 2015. https://doi.org/10.12693/aphyspola.127.756.Search in Google Scholar
[8] D. A. Dummur, M. R. Manterfield, W. H. Miller, and J. K. Dunleavy, “The dielelctric and optical properties of the homologous series of cyano-alkyl-biphenyl liquid crystal,” Mol. Cryst. Liq. Cryst., vol. 45, no. 1, p. 127, 1978. https://doi.org/10.1080/00268947808084998.Search in Google Scholar
[9] N. J. Mottram, C. M. Care, and D. J. Cleaver, “Control of the nematic-isotropic phase transition by an electric field,” Phys. Rev., vol. 74, p. 041703, 2006. https://doi.org/10.1103/physreve.74.041703.Search in Google Scholar PubMed
[10] G. K. Auernhammer, J. Zhao, B. Ullrich, and D. Vollmer, “Frequency-dependent deformation of liquid crystal droplets in an external electric field,” Eur. Phys. J. E, vol. 30, p. 387, 2009. https://doi.org/10.1140/epje/i2009-10538-y.Search in Google Scholar PubMed
[11] T. Miyama, J. Thisayukta, H. Shiraki, et al.., “Fast switching of frequency modulation twisted nematic liquid crystal display fabricated by doping nanoparticles and its mechanism,” Jpn. J. Appl. Phys., vol. 43, p. 2580, 2004. https://doi.org/10.1143/JJAP.43.2580.Search in Google Scholar
[12] Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett., vol. 81, p. 2845, 2002. https://doi.org/10.1063/1.1511282.Search in Google Scholar
[13] F. Haraguchi, K. Inoue, N. Toshima, S. Kobayashi, and K. Takatoh, “Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles,” Jpn. J. Appl. Phys., vol. 46, p. L796, 2007. https://doi.org/10.1143/JJAP.46.L796.Search in Google Scholar
[14] S. Kobayashi, T. Miyama, N. Nishida, et al.., “Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response,” J. Disp. Technol., vol. 2, p. 121, 2006. https://doi.org/10.1109/JDT.2006.872306.Search in Google Scholar
[15] F. Li, O. Buchnev, C. I. Cheon, et al.., “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett., vol. 97, p. 147801, 2006. https://doi.org/10.1103/PhysRevLett.97.147801.Search in Google Scholar PubMed
[16] J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys., vol. 12, pp. 1387–1412, 2012. https://doi.org/10.1016/j.cap.2012.03.019.Search in Google Scholar
[17] J. P. F. Lagerwall and G. Scalia, Liquid Crystals with Nano and Microparticles, Series in Soft Condensed Matter 7, Singapore, World Scientific Press, 2016.10.1142/9280Search in Google Scholar
[18] O. Stamatoiu, J. Mirzaei, X. Feng, and T. Hegmann, “Nanoparticles inliquid crystals and liquid crystalline nanoparticles,” Top. Curr. Chem., vol. 318, pp. 331–394, 2012. https://doi.org/10.1007/128_2011_233.Search in Google Scholar PubMed
[19] J. L. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci., vol. 48, no. 2, pp. 612–624, 2013. https://doi.org/10.1007/s10853-012-6938-5.Search in Google Scholar
[20] L. Martinez-Miranda, K. M. Traister, I. Meléndez-Rodríguez, and L. Salamanca-Riba, “Liquid crystal-ZnO nanoparticle photovoltaics: role of nanoparticles in ordering the liquid crystal,” Appl. Phys. Lett., vol. 97, no. 22, p. 223301, 2010. https://doi.org/10.1063/1.3511736.Search in Google Scholar
[21] H. Jiang and N. Toshima, “Low driving voltage of a liquid crystal device fabricated from 4′-pentyl-4-biphenylcarbonitrile doped with environmentally friendly ZnO nanoparticles,” Chem. Lett., vol. 38, p. 566, 2009. https://doi.org/10.1246/cl.2009.566.Search in Google Scholar
[22] A. Malik, A. Choudhary, P. Silotia, and A. M. Biradar. “Effect of ZnO nanoparticles on the SmC*-SmA* phase transition temperature in electroclinic liquid crystals,” J. Appl. Phys., vol. 110, p. 064111, 2011. https://doi.org/10.1063/1.3642087.Search in Google Scholar
[23] S. Rihana Banu, C. M. Subhan, R. Dinesh, and K. Fakruddin, “Influence of TiO2 and ZnO nanoparticles on orientational order parameter of LC compounds – An optical study,” J. Mol. Cryst. Liq. Cryst., vol. 665, no. 1, pp. 238–247, 2018. https://doi.org/10.1080/15421406.2018.1495867.Search in Google Scholar
[24] S. K. Supreet, K. Raina, and R. Pratibha, “Enhanced stability of the columnar matrix in a discotic liquid crystal by insertion of ZnO nanoparticles,” Liq. Cryst., vol. 40, no. 2, pp. 228–236, 2013. https://doi.org/10.1080/02678292.2012.737479.Search in Google Scholar
[25] A. Rastogi, G. Pathak, A. Srivastava, J. Herman, and R. Manohar, “Cd1−XZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices,” J. Mol. Liq., vol. 255, pp. 93–101, 2018. https://doi.org/10.1016/j.molliq.2018.01.132.Search in Google Scholar
[26] K. S. Ravi and K. K. Raina, “Structural, thermal, dielectric and optical Behavior investigations of water-free ZnO/lyotropic liquid crystal nanocolloids,” Liq. Cryst., vol. 47, pp. 678–688, 2019, https://doi.org/10.1080/02678292.2019.1673911.Search in Google Scholar
[27] A. Sharma, P. Malik, and P. Kumar, “Electro-optical and dielectric responses of ZnO nanoparticles doped nematic liquid crystal in in-plane switching (IPS) mode,” Integr. Ferroelectr., vol. 202, no. 1, pp. 52–66, 2019, https://doi.org/10.1080/10584587.2019.1674824.Search in Google Scholar
[28] K. L. Sandhya, N. Pushpavathi, D. S. Shankar Rao, and S. K. Prasad, “Dielectric and electro optic studies in the vicinity of the transition between two tilted hexatic phases of ZnO-liquid crystal nanocomposite,” J. Mol. Liq., vol. 302, p. 112508, 2020. https://doi.org/10.1016/j.molliq.2020.112508.Search in Google Scholar
[29] N. Pushpavathi, K. L. Sandhya, and S. K. Prasad, “Effect of graphene flakes, Titanium dioxide and zinc oxide nanoparticles on the birefringence, I–V characteristics and Photoluminescence properties of liquid crystal,” J. Mol. Liq., vol. 302, p. 112571, 2020. https://doi.org/10.1016/j.molliq.2020.112571.Search in Google Scholar
[30] M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, et al.., “Spectroscopic studies on liquid crystalline p-n-nonyloxy benzoi acid (9oba) dispersed citrate capped gold nanoparticles,” Optik, vol. 219, p. 165151, 2020. https://doi.org/10.1016/j.ijleo.2020.165151.Search in Google Scholar
[31] D. Jayoti, P. Malik, and S. K. Prasad, “Effect of ZnO nanoparticles on the morphology, dielectric, electro-optic and photo luminescence properties of a confined ferroelectric liquid crystal material,” J. Mol. Liq., vol. 250, pp. 381–387, 2018. https://doi.org/10.1016/j.molliq.2017.12.035.Search in Google Scholar
[32] R. K. N. R. Manepallia, G. Giridhar, P. Pardhasaradhi, et al., “Influence of ZnO nanoparticles dispersion in Liquid Crystalline compounds - Experimental studies,” Mater. Today Proc., vol. 5, pp. 2666–2676, 2018. https://doi.org/10.1016/j.matpr.2018.01.047.Search in Google Scholar
[33] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Microscopy and X-Ray Microanalysis, New York, Plenum Press, 1981.10.1007/978-1-4613-3273-2Search in Google Scholar
[34] P. K. Tripathi, A. K. Misra, K. K. Pandey, and R. Manohar, “Study on dielectric and optical properties of ZnO doped nematic liquid crystal in low frequency region,” Chem. Rapid Commun., vol. 1, pp. 20–26, 2013.Search in Google Scholar
[35] A. M. Eskicioglu, “Quality measurement for monochrome compressed images in the past 25 years,” Proc. ICASSP, Istanbul, Turkey, 2000, pp. 1907–1910.10.1109/ICASSP.2000.859201Search in Google Scholar
[36] L. C. H. R. Sheikh, Z. Wang, and A. C. Bovik, “Live image quality assessment database release 2,” 2007 [Online]. Available at: http://live.ece.utexas.edu/research/quality.Search in Google Scholar
[37] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, and F. Battisti, “TID2008-a database for evaluation of full-reference visual quality assessment metrics,” Advances of Modern Radioelectronics, vol. 10, no. 4, pp. 30–45, 2009.Search in Google Scholar
[38] P. Le Callet and F. Autrusseau, Subjective Quality Assessment IRCCYN/IVC Database, 2005. Available at: https://hal.archives-ouvertes.fr/hal-00580755/en/.Search in Google Scholar
[39] I. Haller, H. A. Huggins, H. R. Lilienthal, and T. R. McGuire, “Order-related properties of some nematic liquids,” J. Phys. Chem., vol. 73, pp. 950–954, 1973.10.1021/j100626a020Search in Google Scholar
[40] V. G. K. M. Pisipati, D. M. Latha, P. Pardhasaradhi, and P. V. Datta Prasad, “Dispersive power and crossover temperature, TCO, of two polar nematic liquid crystals in the visible spectral region,” Liq. Cryst. Today, vol. 23, no. 4, pp. 70–76, 2014. https://doi.org/10.1080/1358314x.2014.945245.Search in Google Scholar
[41] M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, M. C. Rao, N. K. Mohan, and R. K. N. R. Manepalli, “Spectroscopic studies on liquid crystalline n-hexyloxy-cyanobiphenyl with dispersed citrate-capped gold nanoparticles in visible region,” Liq. Cryst., vol. 47, no. 6, pp. 918–938, 2019. https://doi.org/10.1080/02678292.2019.1688874.Search in Google Scholar
[42] P. Jayaprada, M. C. Rao, P. Pardhasaradhi, P. V. Datta Prasad, R. K. N. R. Manepalli, and V. G. K. M. Pisipati, “Effect of ZnO nanoparticles dispersed in liquid crystalline pn-propoxy/propyl benzoic acids and mixtures–optical studies,” Mol. Cryst. Liq. Cryst., vol. 689, no. 1, pp. 10–33, 2019. https://doi.org/10.1080/15421406.2019.1670942.Search in Google Scholar
[43] P. Jayaprada, P. Pardhasaradhi, B. T. P. Madhav, et al.., “Effect of ZnO nanoparticles dispersed in liquid crystalline p-n-propoxy/propyl benzoic acids and mixtures – optical studies,” Mol. Cryst. Liq. Cryst., vol. 689, no. 1, pp. 10–33, 2019. https://doi.org/10.1080/15421406.2019.1670942.Search in Google Scholar
[44] S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev., vol. 33, no. 2, pp. 1270–1274, 1986. https://doi.org/10.1103/physreva.33.1270.Search in Google Scholar PubMed
[45] H. Mada and S. Kobayashi, “Wavelength and voltage dependences of refractive indices of nematic liquid crystals,” Mol. Cryst. Liq. Cryst, vol. 33, nos 1–2, pp. 47–53, 1976. https://doi.org/10.1080/15421407608083869.Search in Google Scholar
[46] J. Li, C. H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol., vol. 1, pp. 51–61, 2005. https://doi.org/10.1109/jdt.2005.853357.Search in Google Scholar
[47] J. Li and S.-T. Wu, “Two-coefficient Cauchy model for low birefringence liquid crystals,” J. Appl. Phys., vol. 96, no 1, pp. 170–174, 2004. https://doi.org/10.1063/1.1738526.Search in Google Scholar
[48] H. J. Kim, Y. G. Kang, H. G. Park, et al.., “Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices,” Liq. Cryst., vol. 38, pp. 871–875, 2011. https://doi.org/10.1080/02678292.2011.584637.Search in Google Scholar
[49] D. V. Rao, P. Pardhasaradhi, V. G. K. M. Pisipati, and P. V. D. Prasad, “Orientational order parameter studies on 3.Om and 3O.Om liquid crystals,” Phase Transit., vol. 88, pp. 137–152, 2015. https://doi.org/10.1080/01411594.2014.961154.Search in Google Scholar
[50] H. E. J. Neugebauer, “Clausius-Mosotti equation for certain types of anisotropic crystals,” Can. J. Phys., vol. 32, no. 1, pp. 1–8, 1954. https://doi.org/10.1139/p54-001.Search in Google Scholar
[51] W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen phase. Teil II,” Z. Naturforsch. A, vol. 15, pp. 287–292, 1960. https://doi.org/10.1515/zna-1960-0401.Search in Google Scholar
[52] W. Kuczynski, B. Zywucki, and J. Malecki, “Determination of orientational order parameter in various liquid-crystalline phases,” Mol. Cryst. Liq. Cryst., vol. 381, pp. 1–19, 2002.https://doi.org/10.1080/713738745.Search in Google Scholar
[53] M. Ramakrishna, N. Rao, P. V. Dattaprasad, and V. G. K. M. Pisipati, “Orientational order parameter in alkoxy benzoic acids—optical studies,” Mol. Cryst. Liq. Cryst., vol. 528, pp. 49–63, 2010. https://doi.org/10.1080/15421406.2010.504515.Search in Google Scholar
[54] B. J. Zywucki and W. Kuczynski, “The orientational order in nematic liquid crystals from birefringence measurements,” IEEE J. Trans. Dielectr. Electr. Insul., vol. 8, pp. 512–516, 2001. https://doi.org/10.1109/94.933375.Search in Google Scholar
[55] G. Pathak, R. Katiyar, K. Agrahari, et al.., “Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles,” Opto-Electron. Rev., vol. 26, pp. 11–18, 2018. https://doi.org/10.1016/j.opelre.2017.11.005.Search in Google Scholar
[56] H. Eskalen Özgan, Ü. Alver, and S. Kerli, “Electro-optical properties of liquid crystals composite with xinc oxide nanoparticles,” Acta Phys. Pol. A, vol. 127, no. 3, pp. 756–760, 2015. https://doi.org/10.12693/aphyspola.127.756.Search in Google Scholar
[57] A. Kumar, “Calculation of optical parameters of liquid crystals,” Acta Phys. Pol. A, vol. A112, pp. 1213–1221, 2007. https://doi.org/10.12693/aphyspola.112.1213.Search in Google Scholar
[58] M. K. Das, G. Sarkar, B. Das, R. Rai, and N. Sinha, “Determination of the orientational order parameter of the homologous series of 4-cyanophenyl 4-alkylbenzoate (n.CN) by different methods,” J. Phys. Condens. Matter, vol. 24, p. 115101, 2012. https://doi.org/10.1088/0953-8984/24/11/115101.Search in Google Scholar PubMed
[59] M. F. Vuks, “Determination of optical anisotropy of aromatic molecules from double refraction in crystals,” Optic Spectrosc., vol. 20, pp. 361–364, 1966.Search in Google Scholar
[60] R. Manohar and J. P. Shukla, “Refractive indices, order parameter and principal polarizability of cholesteric liquid crystals and their homogeneous mixtures,” J. Phys. Chem. Solids, vol. 65, no. 10, pp. 1643–1650, 2004. https://doi.org/10.1016/j.jpcs.2004.03.012.Search in Google Scholar
[61] M. S. Zakerhamidi and H. Rahimzadeh, “Order parameters and refractive indices of some cyano-benzoate nematic liquid crystals with high transition temperatures,” J. Mol. Liq., vol. 172, pp. 41–45, 2012. https://doi.org/10.1016/j.molliq.2012.05.002.Search in Google Scholar
[62] B. J. Zywucki and W. Kuczynski, “The orientational order in nematic liquid crystals from birefringence measurements,” IEEE Trans. Dielectr. Electr. Insul., vol. 8, no. 3, pp. 512–515, 2001. https://doi.org/10.1109/94.933375.Search in Google Scholar
[63] M. Tejaswi, P. Pardhasaradhi, B. T. P. Madhav, et al.., “Optical properties of liquid crystalline alkoxy benzoic acids with dispersed citrate-capped gold nanoparticles,” Z. Naturforsch. A, vol. 74, no. 11, pp. 1–22, 2019. https://doi.org/10.1515/zna-2019-0100.Search in Google Scholar
[64] J. Sivasri, P. Pardhasaradhi, B. T. P. Madhav, M. Tejaswi, and R. K. N. R. Manepalli, “Birefringence studies on alkoxy benzoic acids with dispersed Fe3O4 nanoparticles,” Liq. Cryst., vol. 47, no. 3, pp. 330–344, 2019. https://doi.org/10.1080/02678292.2019.1647571.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Energy levels and transition probabilities of N+, F3+, and Ne4+ ions
- Dynamical Systems & Nonlinear Phenomena
- Genetic algorithm (GA)–based delay feedback control of chaotic behavior in the voltage mode controlled direct current (DC) drive system
- Time-delayed predator–prey interaction with the benefit of antipredation response in presence of refuge
- Gravitation & Cosmology
- Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ2 minimization
- Solid State Physics & Materials Science
- Thermal conversion of CBD grown ZnS thin films to ZnO
- Studies on birefringence, order parameter and image analysis of liquid crystalline p-n butyloxy/butyl benzoic acid with dispersed ZnO nanoparticles
Articles in the same Issue
- Frontmatter
- Atomic, Molecular & Chemical Physics
- Energy levels and transition probabilities of N+, F3+, and Ne4+ ions
- Dynamical Systems & Nonlinear Phenomena
- Genetic algorithm (GA)–based delay feedback control of chaotic behavior in the voltage mode controlled direct current (DC) drive system
- Time-delayed predator–prey interaction with the benefit of antipredation response in presence of refuge
- Gravitation & Cosmology
- Cosmology of Tsallis holographic scalar field models in Chern–Simons modified gravity and optimization of model parameters through χ2 minimization
- Solid State Physics & Materials Science
- Thermal conversion of CBD grown ZnS thin films to ZnO
- Studies on birefringence, order parameter and image analysis of liquid crystalline p-n butyloxy/butyl benzoic acid with dispersed ZnO nanoparticles