Abstract
With the help of R-matrix approach, we present the Toda lattice systems that have extensive applications in statistical physics and quantum physics. By constructing a new discrete integrable formula by R-matrix, the discrete expanding integrable models of the Toda lattice systems and their Lax pairs are generated, respectively. By following the constructing formula again, we obtain the corresponding (2+1)-dimensional Toda lattice systems and their Lax pairs, as well as their (2+1)-dimensional discrete expanding integrable models. Finally, some conservation laws of a (1+1)-dimensional generalised Toda lattice system and a new (2+1)-dimensional lattice system are generated, respectively.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11371361
Funding source: China University of Mining and Technology
Award Identifier / Grant number: XZD 201602
Funding statement: This work was supported by and the National Natural Science Foundation of China (grant No. 11371361), the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and the the Key Discipline Construction by China University of Mining and Technology (Grant No. XZD 201602).
Acknowledgments
This work was supported by and the National Natural Science Foundation of China (grant No. 11371361), the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and the the Key Discipline Construction by China University of Mining and Technology (Grant No. XZD 201602).
References
[1] M. Adler, Invent. Math. 50, 219 (1979).10.1007/BF01410079Search in Google Scholar
[2] A. G. Reymann and M. A. Semenov-Tian-Shansky, Dokl. Akad. Nauk SSSR 25, 1310 (1980).Search in Google Scholar
[3] L. M. Gelfand and L. A. Dikii, Funct. Anal. Appl. 10, 259 (1976).10.1007/BF01076025Search in Google Scholar
[4] M. Blaszak, J. Math. Phys. 35, 4661 (1994).10.1063/1.530807Search in Google Scholar
[5] M. Blaszak and B. M. Szablikowski, J. Phys. A: Math. Gen. 35, 10325 (2002).10.1088/0305-4470/35/48/308Search in Google Scholar
[6] M. Blaszak and B. M. Szablikowski, J. Phys. A: Math. Gen. 35, 10345 (2002).10.1088/0305-4470/35/48/309Search in Google Scholar
[7] M. Blaszak and A. Szum, Reports Math. Phys. 44, 37 (1999).10.1016/S0034-4877(99)80143-8Search in Google Scholar
[8] M. Blaszak and A. Szum, J. Math. Phys. 42, 225 (2001).10.1063/1.1324651Search in Google Scholar
[9] F. Magri, C. Morosi, and G. Tondo, Commun. Math. Phys., 116, 457 (1988).10.1007/BF01218020Search in Google Scholar
[10] C. Athorne and I. Dorfman, J. Math. Phys. 34, 3507 (1993).10.1063/1.530040Search in Google Scholar
[11] G. Z. Tu, R. I. Andruskiw, and X. C. Huang, J Math. Phys. 32, 1907 (1991).Search in Google Scholar
[12] Y. F. Zhang and L. X. Wu, Applied Math. Comput. 268, 561 (2015).10.1016/j.amc.2015.06.112Search in Google Scholar
[13] Y. F. Zhang, H. W. Tam, and J. Q. Mei, Z. Naturforsch. A 70, 791 (2015).10.1515/zna-2015-0213Search in Google Scholar
[14] Y. F. Zhang, H. W. Tam, and L. X. Wu, Z. Naturforsch. A 70, 975 (2015).10.1515/zna-2015-0321Search in Google Scholar
[15] Z. N. Zhu and H. C. Huang, J. Phys. A: Math. Gen. 32, 4171 (1999).10.1088/0305-4470/32/22/316Search in Google Scholar
[16] Z. N. Zhu, ArXiv: nln/0311035v1.Search in Google Scholar
[17] Z. N. Zhu, H. C. Huang, and W. M. Xue, Phys. Lett. A 252, 180 (1999).10.1016/S0375-9601(98)00948-7Search in Google Scholar
[18] E. G. Fan and Z. H. Yang, Int. J. Theor. Phys. 48, 1 (2009).10.1007/s10773-008-9773-3Search in Google Scholar
[19] W. X. Ma, J. Phys. A 40, 15055 (2007).10.1088/1751-8113/40/50/010Search in Google Scholar
[20] G. Z. Tu, J. Phys. A 23, 3902 (1990).Search in Google Scholar
[21] Y. Z. Zhang, L. X. Wu, and R. W. Juan, Commun.Theor. Phys. 63, 535 (2015).10.1088/0253-6102/63/5/535Search in Google Scholar
[22] Y. F. Zhang, Y. Bai, and L. X. Wu, Int. J. Theor. Phys. 55, 2837 (2016).10.1007/s10773-016-2916-zSearch in Google Scholar
[23] Y. F. Zhang and W. J. Rui, Reports Math. Phys. 78, 19 (2016).10.1016/S0034-4877(16)30047-7Search in Google Scholar
[24] Y. F. Zhang, Z. Han, and Z. L. Zhao, Acta Mathematicae Applicatae Sinica, English Series 32, 289 (2016).10.1007/s10255-016-0553-1Search in Google Scholar
[25] Z. J. Qiao, Chin. Sci. Bull. 44, 114 (1999).10.1007/BF02884730Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles
Articles in the same Issue
- Frontmatter
- First Principle DFT Study of Electric Field Effects on the Characteristics of Bilayer Graphene
- Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions
- Molecular Interactions in Particular Van der Waals Nanoclusters
- Neimark-Sacker Bifurcation and Chaotic Behaviour of a Modified Host–Parasitoid Model
- First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure
- Quantum-Phase-Field Concept of Matter: Emergent Gravity in the Dynamic Universe
- Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators
- Electronic Polarisability of NaNO2–NaNO3 and NaOH–NaNO3 Ionic Melts and Effective Ionic Radius of OH-
- Upon Generating Discrete Expanding Integrable Models of the Toda Lattice Systems and Infinite Conservation Laws
- Preparation, Structural, Optical, Electrical, and Magnetic Characterisation of Orthorhombic GdCr0.3Mn0.7O3 Multiferroic Nanoparticles