Abstract
A condensing potential (CP) model was established for predicting the geometric structure of two-dimensional (2D) atomic islands on crystal surfaces. To further verify the CP model, statistical molecular dynamics simulations are performed to investigate the trapping adatom process of atomic island steps on Pt (111). According to the detailed analysis on the adatom trapping process, the CP model should be a universal theory to understand the shape of the 2D atomic islands on crystal surfaces.
References
[1] J. A.Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, Cambridge, UK 2000.10.1017/CBO9780511755651Search in Google Scholar
[2] T. Michely, M. Kalff, G. Comsa, M. Strobel, and K. H. Heinig, Phys. Rev. Lett. 86, 2589 (2001).10.1103/PhysRevLett.86.2589Search in Google Scholar
[3] M. Schmid, C. Lenauer, A. Buchsbaum, F. Wimmer, G. Rauchbauer, et al., Phys. Rev. Lett. 103, 076101 (2009).10.1103/PhysRevLett.103.076101Search in Google Scholar
[4] C. Busse, H. Hansen, U. Linke, and T. Michely, Phys. Rev. Lett. 85, 326 (2000).10.1103/PhysRevLett.85.326Search in Google Scholar
[5] C. Busse, C. Polop, M. Müller, K. Albe, U. Linke, et al., Phys. Rev. Lett. 91, 056103 (2003).10.1103/PhysRevLett.91.056103Search in Google Scholar
[6] S. A. Chaparro, Y. Zhang, and J. Drucker, Appl. Phys. Lett. 76, 3534 (2000).10.1063/1.126698Search in Google Scholar
[7] P. J. Feibelman, Phys. Rev. B 60, 4972 (1999).10.1103/PhysRevB.60.4972Search in Google Scholar
[8] J. M. MacLeod, J. A. Lipton-Duffin, U. Lanke, S. G. Urquhart, and F. Rosei, Appl. Phys. Lett. 94, 103109 (2010).10.1063/1.3093674Search in Google Scholar
[9] T. Y. Fu, and T. T. Tsong, Phys. Rev. B 61, 4511 (2000).10.1103/PhysRevB.61.4511Search in Google Scholar
[10] O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 92, 057202 (2004).10.1103/PhysRevLett.92.057202Search in Google Scholar
[11] H. Brune, Surf. Sci. Rep. 31, 125 (1998).10.1006/appe.1998.0175Search in Google Scholar
[12] M. M. Shen, D. J. Liu, C. J. Jenks, P. A. Thiel, and J. W. Evans, J. Chem. Phys. 130, 094701 (2009).10.1063/1.3078033Search in Google Scholar
[13] K. Morgenstern, E. Lægsgaard, and F. Besenbacher, Phys. Rev. Lett. 94, 166104 (2005).10.1103/PhysRevLett.94.166104Search in Google Scholar
[14] T. Michely and G. Comsa, Surf. Sci. 256, 217 (1991).10.1016/0039-6028(91)90865-PSearch in Google Scholar
[15] D. C. Schlöβer, L. K. Verheij, G. Rosenfeld, and G. Comsa, Phys. Rev. Lett. 82, 3843 (1999).10.1103/PhysRevLett.82.3843Search in Google Scholar
[16] J. Ikonomov, K. Starbova, H. Ibach, and M. Giesen, Phys. Rev. B 75, 245411 (2007).10.1103/PhysRevB.75.245411Search in Google Scholar
[17] M. Kalff, G. Comsa, and T. Michely, Phys. Rev. Lett. 81, 1255 (1998).10.1103/PhysRevLett.81.1255Search in Google Scholar
[18] C. Yin, X. J. Ning, J. Zhuang, Y. Q. Xie, X. F. Gong, et al., Appl. Phys. Lett. 94, 183107 (2009).10.1063/1.3130091Search in Google Scholar
[19] F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).10.1103/PhysRevB.48.22Search in Google Scholar
[20] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).10.1103/PhysRevB.54.11169Search in Google Scholar
[21] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892Search in Google Scholar PubMed
[22] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, et al., Phys. Rev. B 46, 6671 (1992).10.1103/PhysRevB.46.6671Search in Google Scholar
[23] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Search in Google Scholar
[24] J. M. Wofford, S. Nie, K. Thurmer, K. F. McCarty, and O. D. Dubon, Carbon 90, 284 (2015).10.1016/j.carbon.2015.03.056Search in Google Scholar
[25] X. Chen, Y.-W. Wang, X. Liu, X.-Y. Wang, X.-B. Wang, et al., Appl. Surf. Sci. 345, 162 (2015).Search in Google Scholar
[26] D. V. Gruznev, A. V. Matetskiy, L. V. Bondarenko, O. A. Utas, A. V. Zotov, et al., Nat. Comm. 4, 1679 (2013).10.1038/ncomms2706Search in Google Scholar
[27] D. A. Olyanich, V. V. Mararov, T. V. Utas, O. A. Utas, D. V. Gruznev, A. et al., Surf. Sci. 635, 94 (2015).10.1016/j.susc.2015.01.003Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling
Articles in the same Issue
- Frontmatter
- Robust Finite-Time Passivity for Discrete-Time Genetic Regulatory Networks with Markovian Jumping Parameters
- Multi-Soliton Solutions of the Generalized Sawada–Kotera Equation
- Electrical Conduction in Transition-Metal Salts
- Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
- Understanding the Formation Mechanism of Two-Dimensional Atomic Islands on Crystal Surfaces by the Condensing Potential Model
- The Thermodynamic Functions in Curved Space of Neutron Star
- Spanning Trees of the Generalised Union Jack Lattice
- Prolongation Structure of a Generalised Inhomogeneous Gardner Equation in Plasmas and Fluids
- Negative Energies in the Dirac Equation
- Residual Symmetry and Explicit Soliton–Cnoidal Wave Interaction Solutions of the (2+1)-Dimensional KdV–mKdV Equation
- Multifold Darboux Transformations of the Extended Bigraded Toda Hierarchy
- Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration
- Completed Optimised Structure of Threonine Molecule by Fuzzy Logic Modelling