Home Physical Sciences Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
Article
Licensed
Unlicensed Requires Authentication

Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations

  • Wei Feng , Songlin Zhao EMAIL logo and Ying Shi
Published/Copyright: January 20, 2016

Abstract

By imposing reduction conditions on rational solutions for a system involving the Hirota–Miwa equation, rational solutions for lattice potential KdV equation are constructed. Besides, the rational solutions for two semi-discrete lattice potential KdV equations are also considered. All these rational solutions are in the form of Schur function type.

PACS Number:: 02.30.Ik; 02.30.Ks; 05.45.Yv

Corresponding author: Songlin Zhao, Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, P.R. China, E-mail:

Acknowledgments

This project is supported by the National Natural Science Foundation Grant (Nos 11301483, 11401529, and 11501510).

A Proof of Proposition 1

First, we present the following lemma, which is always needed in Casoratian technique.

Lemma 1 [26] Suppose that B is a N×(N-2) matrix, and a, b, c, and d are Nth-order column vectors, then

(A1)|B,a,b||B,c,d||B,a,c||B,b,d|+|B,a,d||B,b,c|=0. (A1)

Now, we prove Proposition 1. We consider the 123¯ version of equations (2a), i.e.

(A2)(a1a2)τ3¯τ1¯2+(a2a3)τ1¯τ2¯3+(a3a1)τ2¯τ1¯3=0. (A2)

Multiplying (a1a2a3)N-2 on the left side of (A2) and noticing the following relations

(A3a)a1N2τ1¯=|N2^,(N2)1¯|, (A3a)
(A3b)a2N2τ2¯=|N2^,(N2)2¯|, (A3b)
(A3c)a3N2τ3¯=|N2^,(N2)3¯|, (A3c)
(A3d)(a1a2)(a1a2)N2τ1¯2=|N3^,(N2)2¯,(N2)1¯|, (A3d)
(A3e)(a2a3)(a2a3)N2τ2¯3=|N3^,(N2)3¯,(N2)2¯|, (A3e)
(A3f)(a3a1)(a1a3)N2τ1¯3=|N3^,(N2)1¯,(N2)3¯|, (A3f)

we get

(A4)(a1a2a3)N2[(a1a2)τ3¯τ1¯2+(a2a3)τ1¯τ2¯3+(a3a1)τ2¯τ1¯3]=|N3^,(N2)2¯,(N2)1¯||N2^,(N2)3¯||N3^,(N2)1¯,(N2)3¯||N2^,(N2)2¯||N3^,(N2)3¯,(N2)2¯||N2^,(N2)1¯|, (A4)

which vanishes in light of Lemma 1, where we employ notations (N-2)j ̅=ϕj ̅(s+N-2), j=1, 2, 3.

Similarly, we investigate the 123¯ version of (2b) with i=1, j=2:

(A5)(a1a2)(ττ1¯2τ1¯τ2¯)+τ2¯,xτ1¯τ2¯τ1¯,x=0. (A5)

Noting equalities (A.3a), (A.3b), and (A.3d) together with

a1N2τ1¯,x=|N3^,N1,(N2)1¯||N2^,(N1)1¯|,

a2N2τ2¯,x=|N3^,N1,(N2)2¯||N2^,(N1)2¯|,

then through a direct calculation and noting that Lemma 1 we know that (2b) holds. In terms of the symmetric property, one know that (2b) with i=1, j=3 or i=2, j=3 also holds. Thus, we complete the proof.                           □

References

[1] F. W. Nijhoff, G. R. W. Quispel, and H. W. Capel, Phys. Lett. A 97, 125 (1983).10.1016/0375-9601(83)90192-5Search in Google Scholar

[2] V. E. Adler, A. I. Bobenko, and Y. B. Suris, Commun. Math. Phys. 233, 513 (2003).10.1007/s00220-002-0762-8Search in Google Scholar

[3] F. W. Nijhoff and V. G. Papageorgiou, Phys. Lett. A 6–7, 337 (1991).10.1016/0375-9601(91)90955-8Search in Google Scholar

[4] P. Xenitidis, F. W. Nijhoff, and S. B. Lobb, Proc. Roy. Soc. A 467, 3295 (2011).10.1098/rspa.2011.0124Search in Google Scholar

[5] O. G. Rasin and P. E. Hydon, Stud. Appl. Math. 119, 253 (2007).10.1111/j.1467-9590.2007.00385.xSearch in Google Scholar

[6] D. J. Zhang, J. W. Cheng, and Y. Y. Sun, J. Phys. A: Math. Theor. 46, 265202 (2013).10.1088/1751-8113/46/26/265202Search in Google Scholar

[7] S. Y. Lou, Y. Shi, and D. J. Zhang, Spectrum Transformation and Conservation Laws of the Lattice Potential KdV Equation (2015), arXiv:1502.01193.Search in Google Scholar

[8] S. Butler and N. Joshi, Inverse Problem 26, 115012 (2010).10.1088/0266-5611/26/11/115012Search in Google Scholar

[9] J. Hietarinta and D. J. Zhang, J. Phys. A Math. Theor. 42, 404006 (2009).10.1088/1751-8113/42/40/404006Search in Google Scholar

[10] F. W. Nijhoff, J. Atkinson, and J. Hietarinta, J. Phys. A Math. Theor. 42, 404005 (2009).10.1088/1751-8113/42/40/404005Search in Google Scholar

[11] Y. Shi, J. J. C. Nimmo, and D. J. Zhang, J. Phys. A: Math. Theor. 47, 025205 (2014).10.1088/1751-8113/47/2/025205Search in Google Scholar

[12] D. J. Zhang and J. Hietarinta, Nonl. Mod. Math. Phys: Proceedings of the First International Workshop, AIP Conference Proceedings, 1212, 154 (2010).Search in Google Scholar

[13] C. W. Cao and X. X. Xu, J. Phys. A Math. Theor. 45, 055213 (2012).10.1088/1751-8113/45/5/055213Search in Google Scholar

[14] C. W. Cao and G. Zhang, J. Phys. A Math. Theor. 45, 95203 (2012).10.1088/1751-8113/45/9/095203Search in Google Scholar

[15] F. W. Nijhoff and J. Atkinson, Inter. Math. Res. Notices 20, 3837 (2010).Search in Google Scholar

[16] S. Yoo-Kong and F. W. Nijhoff, J. Math. Phys. 54, 043511 (2013).10.1063/1.4799274Search in Google Scholar

[17] D. J. Zhang and S. L. Zhao, Stud. Appl. Math. 131, 72 (2013).Search in Google Scholar

[18] S. L. Zhao, D. J. Zhang, and Y. Shi, Chin. Ann. Math. 33B, 259 (2012).10.1007/s11401-012-0699-ySearch in Google Scholar

[19] W. Feng, S. L. Zhao, and D. J. Zhang, J. Nonl. Math. Phys. 19, 1250031 (2012).10.1142/S1793830912500310Search in Google Scholar

[20] Y. Y. Sun, D. J. Zhang, and F. W. Nijhoff, The Sylvester Equation and the Elliptic Korteweg-de Vries system (2015), arXiv:1507.05476.Search in Google Scholar

[21] K. Maruno, K. Kajiwara, S. Nakao, and M. Oikawa, Phys. Lett. A 229, 173 (1997).10.1016/S0375-9601(97)00171-0Search in Google Scholar

[22] B. Grammaticos, A. Ramani, V. Papageorgiou, J. Satsuma, and R. Willox, J. Phys. A Math. Theor. 40, 12619 (2007).10.1088/1751-8113/40/42/S08Search in Google Scholar

[23] Y. Shi and D. J. Zhang, SIGMA 7, 046 (2011).10.1088/1475-7516/2011/11/046Search in Google Scholar

[24] L. J. Nong, D. J. Zhang, Y. Shi, and W. Y. Zhang, Chin. Phys. Lett. 30, 040201 (2013).10.1088/0256-307X/30/4/040201Search in Google Scholar

[25] R. Hirota, Nos. A-6, A-9, Hiroshima University (1981).Search in Google Scholar

[26] N. C. Freeman and J. J. C. Nimmo, Phys. Lett. A 95, 1 (1983).10.1016/0375-9601(83)90764-8Search in Google Scholar

[27] S. Chakravarty and Y. Kodama, Stud. Appl. Math. 123, 83 (2009).10.1111/j.1467-9590.2009.00448.xSearch in Google Scholar

[28] F. W. Nijhoff, Discrete Systems and Integrability, Math4490, University of Leeds, 2004.Search in Google Scholar

[29] F. W. Nijhoff and H. W. Capel, Acta Appl. Math. 39, 133 (1995).10.1007/BF00994631Search in Google Scholar

[30] H. Wu, J. J. Pan, and D. J. Zhang, Commun. Theor. Phys. 63, 669 (2015).10.1088/0253-6102/63/6/669Search in Google Scholar

Received: 2015-11-9
Accepted: 2015-12-15
Published Online: 2016-1-20
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0473/pdf
Scroll to top button