Home Physical Sciences Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
Article
Licensed
Unlicensed Requires Authentication

Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach

  • Paul O. Adebambo EMAIL logo , Bamidele I. Adetunji , Joseph A. Olowofela , James A. Oguntuase and Gboyega A. Adebayo
Published/Copyright: January 22, 2016

Abstract

In this work, detailed first-principles calculations within the generalised gradient approximation (GGA) of electronic, structural, magnetic, and optical properties of Ni,Ti, and Al-based Heusler alloys are presented. The lattice parameter of C1b with space group F4̅3m (216) NiTiAl alloys is predicted and that of Ni2TiAl is in close agreement with available results. The band dispersion along the high symmetry points WL→Γ→XWK in Ni2TiAl and NiTiAl Heusler alloys are also reported. NiTiAl alloy has a direct band gap of 1.60 eV at Γ point as a result of strong hybridization between the d state of the lower and higher valence of both the Ti and Ni atoms. The calculated real part of the dielectric function confirmed the band gap of 1.60 eV in NiTiAl alloys. The present calculations revealed the paramagnetic state of NiTiAl. From the band structure calculations, Ni2TiAl with higher Fermi level exhibits metallic properties as in the case of both NiAl and Ni3Al binary systems.


Corresponding author: Paul O. Adebambo, Department of Physics, University of Agriculture, PMB 2240 Abeokuta, Nigeria; and Department of Physical and Computer Sciences, McPherson University, Km 96 Lagos-Ibadan Expressway, Seriki Sotayo, PMB 2094, Abeokuta, Nigeria, E-mail:

References

[1] J. H. Westbrook and R. L. Fleischer, Wiley and Sons, New York 2000.Search in Google Scholar

[2] W. Lin and A. J. Freeman, Phys. Rev. B 45, 61 (1992).10.1103/PhysRevB.45.61Search in Google Scholar

[3] T. M. Pollock and S. J. Tin, Propul. Power 22, 361 (2006).10.2514/1.18239Search in Google Scholar

[4] M. Enomoto and T. Kumeta, Intermetallics 5, 103 (1997).10.1016/S0966-9795(96)00072-6Search in Google Scholar

[5] G. H. Bozzolo, R. D. Noebe, and C. Amador, Intermetallics, 10, 149 (2002).10.1016/S0966-9795(01)00124-8Search in Google Scholar

[6] F. Heusler, Verh. d. DPG 5, 219, 1903.Search in Google Scholar

[7] F. Heusler, W. Starck, and E. Haupt, Verh. d. DPG 5, 220, 1903.Search in Google Scholar

[8] F. Heusler, Z. Angew. Chem. 17, 260, 1904.10.1002/ange.19040170903Search in Google Scholar

[9] C. Felser, H. G. Fecher, and B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007).10.1002/anie.200601815Search in Google Scholar

[10] D. Kieven and R. Klenk, Phys. Rev. B 81, 075208 (2010).10.1103/PhysRevB.81.075208Search in Google Scholar

[11] S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, et al., Phys. Rev. B 82, 085108 (2010).10.1103/PhysRevB.82.085108Search in Google Scholar

[12] C. G. F. Blum, S. Ouardi, G. H. Fecher, B. Balke, X. Kozina, et al., Appl. Phys. Lett. 98, 25250 (2011).10.1063/1.3600663Search in Google Scholar

[13] I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002).10.1103/PhysRevB.66.134428Search in Google Scholar

[14] G. Bozzolo, R. D. Noebe, J. Ferrante, A. Garg, F. S. Honecy, et al., J. Compt. Aid Mat. Sci. 6, 33 (1999).Search in Google Scholar

[15] Y. Koizumi, Y Ro, S. Nakazawa, and H. Harada, Mater. Sci. Eng. A 223, 36 (1997).10.1016/S0921-5093(96)10508-6Search in Google Scholar

[16] E. Sasioglu, I. Galanakis, C. Friedrich, and S. Blugel, Phys. Rev. B 88, 134402 (2013).10.1103/PhysRevB.88.134402Search in Google Scholar

[17] J. Jung, G. Ghosh, and G. B. Olson. Acta Mater. 51, 6341 (2003).10.1016/j.actamat.2003.08.003Search in Google Scholar

[18] P. Warren, Y. Murakami, Y. Koizumi, and H. Harada, Mater. Sci. Eng. A 223, 17(1997).10.1016/S0921-5093(96)10472-XSearch in Google Scholar

[19] K.-T. Liu and J.-G. Duh, Appl. Surf. Sci. 253, 5268 (2007).10.1016/j.apsusc.2006.11.046Search in Google Scholar

[20] F. S. da Rocha, G. L. F. Fraga, D. E. Brandão, C. M. da Silva, and A. A. Gomes, Physica B 269,154 (1999).10.1016/S0921-4526(99)00102-7Search in Google Scholar

[21] L. W. Pan, L. J. Zheng, W. J. Han, L. Zhou, Z. L. Hu, et al., Mater. Des. 39,192 (2012).10.1016/j.matdes.2012.02.046Search in Google Scholar

[22] K.-T Liu and J.-G. Duh, J. Phase Equilib. Diffus. 31, 223 (2010).10.1007/s11669-010-9693-9Search in Google Scholar

[23] http://www.nobel.se/chemistry/laureates/1998/.Search in Google Scholar

[24] W. Kohn and L. J. Sham, Phys. Rev. A, 140, 1113 (1965).10.1103/PhysRev.140.A1133Search in Google Scholar

[25] J. A. Pople, Rev. Mod. Phys. 71, 1267 (1999).10.1103/RevModPhys.71.1267Search in Google Scholar

[26] P. Hohenberg and W. Kohn, Phys. Rev. B, 136, 864 (1964).10.1103/PhysRev.136.B864Search in Google Scholar

[27] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys.: Condens. Matter 21, 395502 (2009).10.1088/0953-8984/21/39/395502Search in Google Scholar PubMed

[28] S. Baroni, A. Dal Corso, S. de Gironcoli, and P. Giannozzi, http://www.pwscf.org/ (2005).Search in Google Scholar

[29] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, et al., http://www.quantumespresso.org/ (2005).Search in Google Scholar

[30] Pseudopotential Ni.pz-nd-rrkjus.UPF, www.quantumespresso.org.Search in Google Scholar

[31] Pseudopotential Al.pz-vbc.UPF from www.quantumespresso.org.Search in Google Scholar

[32] Pseudopotential Ti.pz-sp-van.UPF, www.quantumespresso.org.Search in Google Scholar

[33] Pseudopotential Ni.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Search in Google Scholar

[34] Pseudopotential Al.pbe-n-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Search in Google Scholar

[35] Pseudopotential Ti.pbe-spn-kjpaw.UPF, http://qe-forge.org/projects/pslibrary/.Search in Google Scholar

[36] H. J. Monkhorst and J. D. Pack, Phys. Rev. B. 13, 5188 (1976).10.1103/PhysRevB.13.5188Search in Google Scholar

[37] F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244, (1944).10.1073/pnas.30.9.244Search in Google Scholar PubMed PubMed Central

[38] W. Jeitschko, Metall: Trans. B 1, 3159 (1970).10.1007/BF03038432Search in Google Scholar

[39] H. C. Kandpal, C. Felser, and R. J. Seshadri, Phys D: Appl. Phys. 39, 776 (2006).10.1088/0022-3727/39/5/S02Search in Google Scholar

[40] A. Kokalj, Comp. Mater. Sci. 28, 155 (2003).10.1016/S0927-0256(03)00104-6Search in Google Scholar

[41] P. V. Sreenivasa and V. K. Reddy, J. Alloys Comp. 616, 527 (2014).10.1016/j.jallcom.2014.07.020Search in Google Scholar

[42] R. E. Watson, M. Weinert, and M. Alatalo, Phys. Rev. B. 57, 12134 (1998).10.1103/PhysRevB.57.12134Search in Google Scholar

Received: 2015-10-20
Accepted: 2015-12-10
Published Online: 2016-1-22
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0439/pdf
Scroll to top button