Abstract
The modified simple equation method, the exp-function method, and the method of soliton ansatz for solving nonlinear partial differential equations are presented. Based on these three different methods, we obtain the exact solutions and the bright–dark soliton solutions with parameters of the long-short wave resonance equations which describe the resonance interaction between the long wave and the short wave. When these parameters take special values, the solitary wave solutions are derived from the exact solutions. We compare the results obtained using the three methods. Also, a comparison between our results and the well-known results is given.
Acknowledgments
The authors wish to thank the referees for their comments on this paper.
References
[1] A. M. Wazwaz, Appl. Math. Comput. 202, 275 (2008).10.1016/j.amc.2008.02.013Search in Google Scholar
[2] J. H. He and X. H. Wu, Chaos Soliton Fract. 30, 700 (2006).10.1016/j.chaos.2006.03.020Search in Google Scholar
[3] X. H. Wu and J. H. He, Comput. Math. Appl. 54, 966 (2007).10.1016/j.camwa.2006.12.041Search in Google Scholar
[4] J.-H. He and L. N. Zhang, Phys. Lett. A 372, 1044 (2008).10.1016/j.physleta.2007.08.059Search in Google Scholar
[5] S. D. Zhu, Int. J. Nonlinear Sci. Numer. Simul. 8, 465 (2007).Search in Google Scholar
[6] S. Zhang, Chaos Soliton Fract. 38, 270 (2008).10.1016/j.chaos.2006.11.014Search in Google Scholar
[7] D. D. Ganji, A. Asgari, and Z. Z. Ganji, Acta Appl. Math. 104, 201 (2008).10.1007/s10440-008-9252-0Search in Google Scholar
[8] I. Aslan and V. Marinakis, Commun. Theor. Phys. 56, 397 (2011).10.1088/0253-6102/56/3/01Search in Google Scholar
[9] I. Aslan, Commun. Theor. Phys. 60, 521 (2013).10.1088/0253-6102/60/5/01Search in Google Scholar
[10] A. M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 11, 148 (2006).10.1016/j.cnsns.2004.10.001Search in Google Scholar
[11] A. M. Wazwaz, Phys. Lett. A 352, 500 (2006).10.1016/j.physleta.2005.12.036Search in Google Scholar
[12] A. M. Wazwaz, Int. J. Comput. Math. 82, 235 (2005).10.1080/00207160412331296706Search in Google Scholar
[13] E. Fan and H. Zhang, Phys. Lett. A 246, 403 (1998).10.1016/S0375-9601(98)00547-7Search in Google Scholar
[14] E. M. E. Zayed and A. H. Arnous, Chin. Phys. Lett. 29, 080203 (2012).10.1088/0256-307X/29/8/080203Search in Google Scholar
[15] W. Malfliet, Am. J. Phys. 60, 650 (1992).10.1119/1.17120Search in Google Scholar
[16] W. Malfliet and W. Hereman, Phys. Scr. 54, 563 (1996).10.1088/0031-8949/54/6/003Search in Google Scholar
[17] W. Malfliet and W. Hereman, Phys. Scr. 54, 569 (1996).10.1088/0031-8949/54/6/004Search in Google Scholar
[18] A. M. Wazwaz, Chaos Soliton Fract. 25, 55 (2005).10.1016/j.chaos.2004.09.122Search in Google Scholar
[19] A. M. Wazwaz, Appl. Math. Comput. 167, 210 (2005).10.1016/j.amc.2004.07.022Search in Google Scholar
[20] E. Fan, Phys. Lett. A 277, 212 (2000).10.1016/S0375-9601(00)00725-8Search in Google Scholar
[21] E. Fan and Y. C. Hon, Z. Naturforsch. 57a, 692 (2002).Search in Google Scholar
[22] X. Zheng, Y. Chen, and H. Zhang, Phys. Lett. A 311, 145 (2003).10.1016/S0375-9601(03)00451-1Search in Google Scholar
[23] A. M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 13, 584 (2008).10.1016/j.cnsns.2006.06.014Search in Google Scholar
[24] M. A. Abdou, Appl. Math. Comput. 190, 988 (2007).10.1016/j.amc.2007.01.070Search in Google Scholar
[25] M. Wang, X. Li, and J. Zhang, Phys. Lett. A 372, 417 (2008).10.1016/j.physleta.2007.07.051Search in Google Scholar
[26] E. M. E. Zayed and K. A. Gepreel, J. Math. Phys. 50, 013502 (2009).10.1063/1.3033750Search in Google Scholar
[27] N. A. Kudryashov, Appl. Math. Comput. 217, 1755 (2010).10.1016/j.amc.2010.03.071Search in Google Scholar
[28] I. Islan, Appl. Math. Comput. 217, 937 (2010).Search in Google Scholar
[29] E. M. E. Zayed, J. Phys. A: Math. Theor. 42, 195202 (2009).10.1088/1751-8113/42/19/195202Search in Google Scholar
[30] A. J. M. Jawad, M. D. Petkovic, and A. Biswas, Appl. Math. Comput. 217, 869 (2010).10.1016/j.amc.2010.06.030Search in Google Scholar
[31] E. M. E. Zayed, Appl. Math. Comput. 218, 3962 (2011).10.1016/j.amc.2011.09.025Search in Google Scholar
[32] E. M. E. Zayed and S. A. H. Ibrahim, Chin. Phys. Lett. 29, 060201 (2012).10.1088/0256-307X/29/6/060201Search in Google Scholar
[33] E. M. E. Zayed and A. H. Arnous, Appl. Appl. Math. 8, 553 (2013).Search in Google Scholar
[34] E. M. E. Zayed and A. H. Arnous, AIP Conf. Proc. 1479, 2044 (2012).Search in Google Scholar
[35] W. X. Ma, T. Huang, and Y. Zhang, Phys. Script. 82, 065003 (2010).10.1088/0031-8949/82/06/065003Search in Google Scholar
[36] E. M. E. Zayed and A.-G. Al-Nowehy, Z. Naturforsch. 70a, 775 (2015).10.1515/zna-2015-0151Search in Google Scholar
[37] R. M. El-Shiekh and A.-G. Al-Nowehy, Z. Naturforsch. 68a, 255 (2013).10.5560/ZNA.2012-0108Search in Google Scholar
[38] G. M. Moatimid, R. M. El-Shiekh, and A.-G. Al-Nowehy, Nonlinear Sci. Lett. A 4, 1 (2013).Search in Google Scholar
[39] G. M. Moatimid, R. M. El-Shiekh, and A.-G. Al-Nowehy, Am. J. Comput. Appl. Math. 1, 1 (2011).Search in Google Scholar
[40] E. M. E. Zayed, G. M. Moatimid, and A.-G. Al-Nowehy, Scientific J. Math. Res. 5, 19 (2015).Search in Google Scholar
[41] G. M. Moatimid, R. M. El-Shiekh, and A.-G. Al-Nowehy, Appl. Math. Comput. 220, 455 (2013).10.1016/j.amc.2013.06.034Search in Google Scholar
[42] M. H. M. Moussa and R. M. El-Sheikh, Physica A 371, 325 (2006).10.1016/j.physa.2006.04.044Search in Google Scholar
[43] A. Biswas, D. Milovic, and M. Edwards, Mathematical Theory of Dispersion-Managed Optical Solitons, Springer-Verlag, New York 2010.10.1007/978-3-642-10220-2Search in Google Scholar
[44] A. K. Sarma, M. Saha, and A. Biswas, J. Infrared Milli Terahz Waves 31, 1048 (2010).10.1007/s10762-010-9673-5Search in Google Scholar
[45] Y. Shang, Chaos Soliton. Fract. 36, 762 (2008).10.1016/j.chaos.2006.07.007Search in Google Scholar
[46] V. D. Djordjevic and L. G. Redekopp, J. Fluid Mech. 79, 703 (1977).10.1017/S0022112077000408Search in Google Scholar
[47] A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 15, 2744 (2010).10.1016/j.cnsns.2009.10.023Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Articles in the same Issue
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties