Home Physical Sciences Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
Article
Licensed
Unlicensed Requires Authentication

Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions

  • S. Shwetanshumala EMAIL logo
Published/Copyright: January 22, 2016

Abstract

Evolution of bright optical spatial solitons in biased photovoltaic photorefractive (PVPR) medium is investigated in the present work. The space-charge field developed in the medium is comprised of local and nonlocal parts. Lowest order charge drift results in the buildup of the local space-charge field, whereas higher order drift and charge diffusion are responsible for nonlocal field development. The dynamical equation for solitons in the closed circuit PVPR medium is obtained under Akhmanov’s paraxial ray approximation. Conditions for stationary propagation are obtained, and the path of soliton in the medium is examined. The asymmetry in the nonlinear refractive index introduced by nonlocal contribution to the space-charge field causes a soliton to deflect from its straight line path in the medium. The roles of charge diffusion and higher order drift on soliton trajectory are examined.


Corresponding author: S. Shwetanshumala, Department of Physics, A.N. College, Patna (Bihar), India, E-mail:

Acknowledgments

We thank the anonymous reviewer for pointing out some important missing points in the investigation which have now been taken care of.

References

[1] M. Segev, B. Crosignani, A. Yariv, and B. Fischer, Phys. Rev. Lett. 68, 923 (1992).10.1103/PhysRevLett.68.923Search in Google Scholar

[2] M. Karlsson, D. Anderson, A. Hook, and M. Lisak, Phys. Scr. 50, 265 (1994).10.1088/0031-8949/50/3/008Search in Google Scholar

[3] G. P. Agrawal, Nonlinear Fiber Optics. Academic Press, Boston, MA, 1995.Search in Google Scholar

[4] D. Anderson, Phys. Rev. A 27, 3135 (1983).10.1103/PhysRevA.27.3135Search in Google Scholar

[5] S. Konar and A. Sengupta, J. Opt. Soc. Am. B 11, 1644 (1994).10.1364/JOSAB.11.001644Search in Google Scholar

[6] S. Konar, M. Mishra, and S. Jana, Phys. Lett. A, 362, 505 (2007).10.1016/j.physleta.2006.11.025Search in Google Scholar

[7] G. C. Duree, J. L. Slultz, G. Salamo, M. Segev, A. Yariv, et al. Phys. Rev. Lett. 71, 533 (1993).10.1103/PhysRevLett.71.533Search in Google Scholar

[8] D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12,1628 (1995).10.1364/JOSAB.12.001628Search in Google Scholar

[9] S. Konar, S. Jana, and S. Shwetanshumala Opt. Com. 273, 324 (2007).10.1016/j.optcom.2007.01.051Search in Google Scholar

[10] N. Asif, S. Shwetanshumala, and S Konar, Phys. Lett. A 372, 735 (2008).10.1016/j.physleta.2007.08.009Search in Google Scholar

[11] M. Chauvet, S. A. Hawkins, G. Salamo, M. Segev, D. F. Bliss, et al. Appl. Phys. Lett. 70, 2499 (1997).10.1063/1.118902Search in Google Scholar

[12] M.-F Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, et al. Electron. Lett. 31, 826 (1995).10.1049/el:19950570Search in Google Scholar

[13] A. A. Zozulya, D. R. Anderson, A.V. Mamaev, and M. Staffman, Euro. Phys. Lett. 36, 419 (1996).10.1209/epl/i1996-00245-ySearch in Google Scholar

[14] K. Kos, H. Ming, G. Salamo, M.-F Shih, M. Segev, et al. Phys. Rev. E 53, R4330 (1996).10.1103/PhysRevE.53.R4330Search in Google Scholar PubMed

[15] S. Lan, E. DelRe, Z. Chen, M.-F Shih, and M. Segev, Opt. Lett. 24, 475 (1999).10.1364/OL.24.000475Search in Google Scholar

[16] M. Segev and A. J. Agranat, Opt. Lett. 22, 1299 (1997).10.1364/OL.22.001299Search in Google Scholar

[17] S. Konar, S. Shekhar, and W. P. Hong, Opt. Laser Technol. 42, 1294 (2010).10.1016/j.optlastec.2010.04.005Search in Google Scholar

[18] M. Chauvet, J. Opt. Soc. Am. 20, 2515 (2003).10.1364/JOSAB.20.002515Search in Google Scholar

[19] L. Zhang, K-Quing Lu, Mei-Zhi Zhang, Xue-Ming Liu, and Yan-Peng Zhang, Chin. Phys. B 17, 2539 (2008).10.1088/1674-1056/17/7/033Search in Google Scholar

[20] M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, Phys. Rev. Lett. 73, 3211 (1994).10.1103/PhysRevLett.73.3211Search in Google Scholar

[21] S. Srivastava and S. Konar, Optics Laser Technol. 41, 419 (2009).10.1016/j.optlastec.2008.08.005Search in Google Scholar

[22] K. Zhan, C. Hou, and Y. Du, Opt. Commun. 283, 138 (2010).10.1016/j.optcom.2009.09.041Search in Google Scholar

[23] G. Zhang, J. Liu, S. Liu, H. Zhang, and C. Wang, J. Opt. A: Pure Appl. Opt. 8, 442 (2006).10.1088/1464-4258/8/5/012Search in Google Scholar

[24] Y. Su, Q. Jiang, and X. Ji, Phys. Scr. 82, 035401 (2010).10.1088/0031-8949/82/03/035401Search in Google Scholar

[25] M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, Opt. Lett. 30, 1977 (2005).10.1364/OL.30.001977Search in Google Scholar

[26] W. Królikowski, N. Akhmediev, B. Luther-Davies, and M. Cronin-Golomb, Phys. Rev. E 54, 5761 (1996).10.1103/PhysRevE.54.5761Search in Google Scholar PubMed

[27] M. I. Carvalho, M. Facao, and D. N. Christodoulides, Phys. Rev. E 76, 16602 (2007).10.1103/PhysRevE.76.016602Search in Google Scholar PubMed

[28] S. Shwetanshumala, S. Konar, N. Asif, and A. Biswas, Phys. Scr. 84, 025402 (2011).10.1088/0031-8949/84/02/025402Search in Google Scholar

[29] S. Shwetanshumala, N. Asif, S. Konar, and A. Biswas, Optik 124, 229 (2013).10.1016/j.ijleo.2011.11.053Search in Google Scholar

[30] N. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).10.1080/00150197908239450Search in Google Scholar

[31] S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Radio Phys. Quant. Electron. 14, 1062 (1971).10.1007/BF01029467Search in Google Scholar

Received: 2015-9-30
Accepted: 2015-12-9
Published Online: 2016-1-22
Published in Print: 2016-2-1

©2016 by De Gruyter

Downloaded on 19.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2015-0409/pdf
Scroll to top button