Abstract
The transient natural convection of a viscous fluid in a heated vertical tube is studied using the two-dimensional differential transform method (DTM). A time-dependent Dirichlet boundary condition is imposed for tube wall temperature. The partial differential equations for the velocity and temperature fields within the tube are solved by the DTM while considering temperature-dependent viscosity and thermal conductivity of the fluid. As a result, tractable solutions in double-series form are derived for the temperature and flow velocity. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical results illustrate the effects of temperature-dependent properties on transient temperature and flow behaviour, including the Nusselt number and volumetric flow rate. The DTM gives accurate series solutions without any special functions for nonlinear transient heat transfer problems which are advantageous in finding the derivative or integral.
References
[1] R. J. Goldstein and D. G. Briggs, J. Heat Transfer 86, 490 (1964).10.1115/1.3688728Search in Google Scholar
[2] M. A. Al-Nimr, Int. J. Heat Mass Transfer 36, 2385 (1993).10.1016/S0017-9310(05)80122-XSearch in Google Scholar
[3] M. A. Al-Nimr and M. A. I. El-Shaarawi, Heat Mass Transfer 30, 241 (1995).10.1007/BF01602770Search in Google Scholar
[4] B. K. Jha, A. K. Samaila, and A. O. Ajibade, Math. Comput. Model. 54, 2880 (2011).10.1016/j.mcm.2011.07.008Search in Google Scholar
[5] K. T. Yang, J. Appl. Mech. 27, 230 (1960).Search in Google Scholar
[6] T. H. Schwab and K. J. De Witt, AIChE J. 16, 1005 (1970).10.1002/aic.690160624Search in Google Scholar
[7] M. A. I. El-Shaarawi and M. Al-Attas, JSME Int. J. 36b, 156 (1993).10.1299/jsmeb.36.156Search in Google Scholar
[8] B. L. Kuo, Appl. Math. Comput. 165, 63 (2005).10.1016/j.amc.2004.04.090Search in Google Scholar
[9] C. K. Chen, H. Y. Lai, and C. C. Liu, Int. Commun. Heat Mass Transfer 38, 285 (2011).10.1016/j.icheatmasstransfer.2010.12.016Search in Google Scholar
[10] H. A. Peker and G. Oturanc, arXiv 1212.1706 (2012) 11 pages.Search in Google Scholar
[11] R. Chiba, Int. J. Thermophys. 33, 363 (2012).10.1007/s10765-011-1153-1Search in Google Scholar
[12] M. Hatami and D. D. Ganji, Case Studies Thermal Eng. 2, 14 (2014).10.1016/j.csite.2013.11.001Search in Google Scholar
[13] M. Hatami, J. Hatami, M. Jafaryar, and G. Domairry, J. Brazil. Soc. Mech. Sci. Eng. (2015) in press.Search in Google Scholar
[14] J. C. Umavathi and M. Shekar, Meccanica (2015) in press.Search in Google Scholar
[15] P. L. Ndlovu and R. J. Moitsheki, Commun. Nonlinear Sci. Numer. Simul. 18, 2689 (2013).10.1016/j.cnsns.2013.02.019Search in Google Scholar
[16] R. Chiba, Abst. Appl. Anal. 2014 (2014), Article ID 684293.Search in Google Scholar
[17] R. Chiba, Appl. Mech. Mater. 627, 145 (2014).10.4028/www.scientific.net/AMM.627.145Search in Google Scholar
[18] R. Chiba, Nonlinear Eng. 3, 215 (2014).10.1515/nleng-2014-0020Search in Google Scholar
[19] M. J. Jang, C. L. Chen, and Y. C. Liu, Appl. Math. Comput. 121, 261 (2001).10.1016/S0096-3003(99)00293-3Search in Google Scholar
[20] M. J. Jang, Y. L. Yeh, C. L. Chen, and W. C. Yeh, Appl. Math. Comput. 216, 2339 (2010).10.1016/j.amc.2010.03.079Search in Google Scholar
[21] E. R. Menold and K. T. Yang, J. Appl. Mech. 29, 124 (1962).10.1115/1.3636443Search in Google Scholar
[22] I. Pop and T. Y. Na, Warme-und Stoffubertragung 18, 37 (1984).10.1007/BF01461488Search in Google Scholar
[23] Y. Joshi and B. Gebhart, Int. J. Heat Mass Transfer 27, 1573 (1984).10.1016/0017-9310(84)90269-2Search in Google Scholar
[24] A. K. Singh, Defence Sci. J. 38, 35 (1988).10.14429/dsj.38.4823Search in Google Scholar
[25] T. Paul, B. K. Jha, and A. K. Singh, Heat Mass Transfer 32, 61 (1996).10.1007/s002310050092Search in Google Scholar
[26] B. K. Jha and A. O. Ajibade, J. Process Mech. Eng. 224, 247 (2010).10.1243/09544089JPME319Search in Google Scholar
[27] K. Mizukami, Int. J. Heat Mass Transfer 20, 981 (1977).10.1016/0017-9310(77)90069-2Search in Google Scholar
[28] Rizwan-uddin, Numer. Heat Transfer 33b, 269 (1998).10.1080/10407799808915033Search in Google Scholar
[29] D. Holdsworth and R. Simpson, Thermal Processing of Packaged Foods, Springer, New York 2007.10.1007/978-0-387-72250-4Search in Google Scholar
[30] M. Mishra, P. K. Das, and S. Sarangi, Int. J. Heat Mass Transfer 51, 2583 (2008).10.1016/j.ijheatmasstransfer.2007.07.054Search in Google Scholar
[31] Q. Rubbab, D. Vieru, C. Fetecau, and C. Fetecau, PLoS ONE 8, e78352 (2013).10.1371/journal.pone.0078352Search in Google Scholar PubMed PubMed Central
[32] R. K. Deka, N. Kalita, and A. Paul, Proc. Int. Conf. Frontiers Math., Guwahati (2015).Search in Google Scholar
[33] W. T. Lawrence and J. C. Chato, J. Heat Transfer 88, 214 (1966).10.1115/1.3691518Search in Google Scholar
[34] K. E. Torrance and D. L. Turcotte, J. Fluid Mech. 47, 113 (1971).10.1017/S002211207100096XSearch in Google Scholar
[35] S. H. Chang and I. L. Chang, Appl. Math. Comput. 215, 2486 (2009).10.1016/j.amc.2009.08.046Search in Google Scholar
[36] M. N. Ozisik, Boundary Value Problems of Heat Conduction, Dover, New York 1989.Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties
Articles in the same Issue
- Frontmatter
- Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrödinger Equation
- The Modified Simple Equation Method, the Exp-Function Method, and the Method of Soliton Ansatz for Solving the Long–Short Wave Resonance Equations
- Application of the Reverberation-Ray Matrix to the Non-Fourier Heat Conduction in Functionally Graded Materials
- Rational Solutions for Lattice Potential KdV Equation and Two Semi-discrete Lattice Potential KdV Equations
- Structural, Electronic, Magnetic and Optical Properties of Ni,Ti/Al-based Heusler Alloys: A First-Principles Approach
- Ab Initio Calculations on the Structural, Mechanical, Electronic, Dynamic, and Optical Properties of Semiconductor Half-Heusler Compound ZrPdSn
- Qualitative Behaviour of Generalised Beddington Model
- Studying Nuclear Level Densities of 238U in the Nuclear Reactions within the Macroscopic Nuclear Models
- Total π-Electron Energy of Conjugated Molecules with Non-bonding Molecular Orbitals
- Investigation of Thermal Expansion and Physical Properties of Carbon Nanotube Reinforced Nanocrystalline Aluminum Nanocomposite
- Bistable Bright Optical Spatial Solitons due to Charge Drift and Diffusion of Various Orders in Photovoltaic Photorefractive Media Under Closed-Circuit Conditions
- Application of a Differential Transform Method to the Transient Natural Convection Problem in a Vertical Tube with Variable Fluid Properties