Startseite Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterization and structure-property relations in mullite-type Pb2(Pb1−xSn x )O4 solid solution

  • Christopher S. Reuter ORCID logo , M. Mangir Murshed ORCID logo EMAIL logo , Michael Fischer ORCID logo und Thorsten. M. Gesing ORCID logo
Veröffentlicht/Copyright: 15. Juli 2024

Abstract

The crystal structures of both Pb2PbO4 (Pb3O4) and Pb2SnO4 at room temperature can be described using mullite-type setting in the space groups P42/mbc and Pbam, respectively. At what chemical extend the crystal structure prefers either of the space groups would be an excellent playground in the Pb2(Pb1−xSn x )O4 solid solution. Members of the solid solutions have been prepared by solid-state reactions carried out in sealed quartz tubes. Each sample has been found to be phase pure confirmed by X-ray powder diffraction data Rietveld refinement. Samples with higher tin content require higher synthesis temperatures, and controlled decomposition of Pb3O4 serves as the source for both Pb2+ and Pb4+ cations. Since the Pb4+ cation is larger than Sn4+, the MO6 polyhedral volume decreases with increasing Sn-content. As such, each metric parameter shows a linear trend following Vegard’s rule. The concomitant contraction of the MO6 octahedra and the high stereo-chemical activity of the 6s2 lone electron pairs of lead in the Pb2+O4 distorted pyramid results in symmetry reduction. DFT suggests dynamical instability of the tetragonal Pb3O4 while Pb2SnO4 keeps orthorhombic symmetry at low temperatures, which agrees well with the experimental findings. The global blue shift of the vibrational mode frequencies is explained by the quasi-harmonic approach. The indirect band-gap linearly increases from 2.1(1) eV (x = 0) to a maximum value of 2.5(1) eV for x = 0.8 followed by a sharp drop towards Pb2SnO4. Thermogravimetric analysis demonstrates higher thermal stability with increasing Sn-content, which is explained in terms of higher bond strength of Sn–O than that of Pb–O in the MO6 octahedra.


Corresponding author: M. Mangir Murshed, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany, E-mail:

Acknowledgements

We gratefully acknowledge the German science foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number GE1981/18-1 (project-ID: 514924554) for the financial support of this project and for shared funding of the FTIR-Spectrometer INST144/521-1 FUGG and the computer cluster “lesum” INST144/506-1 FUGG within large instrument application. MF acknowledges funding by the DFG through a Heisenberg fellowship (project-ID: 455871835).

  1. Ethical approval: The local Institutional Review Board deemed the study exempt from review.

  2. Informed consent: Informed consent was obtained from all individuals included in this study.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors hereby state no conflict of interest.

  5. Research funding: German Science Foundation (Deutsche Forschungsgemeinschaft, DFG).

References

1. Ross, C. B.; Wood, D. R.; Scholl, P. S. Series Limit and Hydrogenlike Series in PbII. J. Opt. Soc. Am. 1976, 66 (1), 36–39; https://doi.org/10.1364/josa.66.000036.Suche in Google Scholar

2. Hanni, M. E.; Keele, J. A.; Lundeen, S. R.; Fehrenbach, C. W.; Sturrus, W. G. Polarizabilities of Pb2+ and Pb4+ and Ionization Energies of Pb+ and Pb3+ from Spectroscopy of High-L Rydberg States of Pb+ and Pb3+. Phys. Rev. A 2010, 81 (4), 042512; https://doi.org/10.1103/physreva.81.042512.Suche in Google Scholar

3. Blair, T. L. Lead Oxide Technology – Past, Present, and Future. J. Pow. Sour. 1998, 73, 47–55; https://doi.org/10.1016/s0378-7753(97)02781-x.Suche in Google Scholar

4. Nabilah Razali, N. A.; Shahrim Mustafa, I.; Noor Azman, N. Z.; Kamari, H. M.; Mat Hashim, I. S.; Ahmad, N.; Norazam, N. A.; Shahira Che Asudin, C. A. Physical and Shielding Protection Parameterization of PbO-ZnO-B2o3-SiO2 Glass Network. J. Phys.: Conf. Ser. 2018, 1083, 012005; https://doi.org/10.1088/1742-6596/1083/1/012005.Suche in Google Scholar

5. Sharma, G.; Singh, K.; Manupriya; Mohan, S.; Singh, H.; Bindra, S. Effects of Gamma Irradiation on Optical and Structural Properties of PbO–Bi2O3–B2O3 Glasses. J. Rad. Phys. Chem. 2006, 75 (9), 959–966; https://doi.org/10.1016/j.radphyschem.2006.02.008.Suche in Google Scholar

6. Zhou, Q.; Zhou, X.; Zheng, R.; Liu, Z.; Wang, J. Application of Lead Oxide Electrodes in Wastewater Treatment: A Review. J. Sci. Tot. Env. 2022, 806, 150088; https://doi.org/10.1016/j.scitotenv.2021.150088.Suche in Google Scholar PubMed

7. Gerber, G. B.; Léonard, A.; Jacquet, P. Toxicity, Mutagenicity and Teratogenicity of Lead. Mutat. Res. 1980, 76 (2), 115–141; https://doi.org/10.1016/0165-1110(80)90006-8.Suche in Google Scholar PubMed

8. Shannon, R. D.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr. B 1969, 25 (5), 925–946; https://doi.org/10.1107/s0567740869003220.Suche in Google Scholar

9. Shannon, R. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32 (5), 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar

10. Byström, A.; Westgren, A. Crystal Structure of Pb3O4 and SnPb2O4. Ark. Kemi Mineral. Och Geol. 1943, B16, 1–7.Suche in Google Scholar

11. Krenner, J. A. Schafarzikite, ein neues Mineral. Z. Kristallogr. 1921, 56, 198–200.Suche in Google Scholar

12. Tokody, L. VI. Beiträge zur Kenntnis der kristallographischen und physikalischen Eigenschaften des Schafarzikits. Z. Kristallogr. 1925, 62 (1–6), 123–126; https://doi.org/10.1524/zkri.1925.62.1.123.Suche in Google Scholar

13. Fischer, R. X.; Schneider, H.; Rahman, S.; Freimann, S. Crystal Chemistry of Mullite and Related Phases: Sections 1.1–1.2. In Mullite; Wiley-VCH: Weinheim, 2005; pp. 1–70.10.1002/3527607358.ch1aSuche in Google Scholar

14. Gavarri, J.-R.; Weigel, D.; Oxydes de Plomb, I. Structure cristalline du minium Pb3O4, à température ambiante (293 K). J. Solid State Chem. 1975, 13 (3), 252–257; https://doi.org/10.1016/0022-4596(75)90127-9.Suche in Google Scholar

15. Garnier, P.; Berar, J. F.; Calvarin, G. Calorimetric Study of Lead Oxide Pb3O4. J. Mater. Res. Bull. 1979, 14, 1275–1279; https://doi.org/10.1016/0025-5408(79)90004-7.Suche in Google Scholar

16. Gavarri, J. R.; Calvarin, G.; Weigel, D. Lead Oxides .2. Structural Study of Orthorhombic Phase of Oxide Pb3O4. J. Solid State Chem. 1975, 14 (1), 91–98; https://doi.org/10.1016/0022-4596(75)90365-5.Suche in Google Scholar

17. Garnier, P.; Calvarin, G.; Weigel, D. Lead Oxides .3. X-Ray-Diffraction Study of Ferroelectric and Ferroelastic Transition Powder – Pb3O4. J. Solid State Chem. 1976, 16 (1–2), 55–62; https://doi.org/10.1016/0022-4596(76)90007-4.Suche in Google Scholar

18. Gavarri, J. R.; Weigel, D. Modèles analytiques d’évolution structurale: calcul des paramètres de la maille orthorhombique de Pb3O4 en fonction de la température. Acta Crystallogr. A 1982, 38, 195–200; https://doi.org/10.1107/s0567739482000448.Suche in Google Scholar

19. Gavarri, J. R.; Weigel, D.; Hewat, A. W. Lead Oxides. IV. Structural Evolution of Pb3O4 between 240 and 5 K and Transition Mechanism. J. Solid State Chem. 1978, 23 (3–4), 327–339; https://doi.org/10.1016/0022-4596(78)90081-6.Suche in Google Scholar

20. Dinnebier, R. E.; Carlson, S.; Hanfland, M.; Jansen, M. Bulk Moduli and High-Pressure Crystal Structures of Minium, Pb3O4, Determined by X-Ray Powder Diffraction. Am. Mineral. 2003, 88, 996–1002; https://doi.org/10.2138/am-2003-0707.Suche in Google Scholar

21. Leineweber, A.; Dinnebier, R. E. Anisotropic Microstrain Broadening of Minium, Pb3O4, in a High-Pressure Cell: Interpretation of Line-Width Parameters in Terms of Stress Variations. J. Appl. Crystallogr. 2010, 43, 17–26; https://doi.org/10.1107/s002188980904758x.Suche in Google Scholar

22. Trömel, M. Zur Struktur der Verbindungen vom Sr2PbO4-Typ. Naturwissenschaften 1965, 52 (17), 492–493; https://doi.org/10.1007/bf00646570.Suche in Google Scholar

23. Kühn, H. Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 2; National Gallery of Art: Washington, 1993.Suche in Google Scholar

24. Gavarri, J. R.; Vigouroux, J. P.; Calvarin, G.; Hewat, A. W. Structure de SnPb2O4 à quatre températures: relation entre dilatation et agitation thermiques. J. Solid State Chem. 1981, 36 (1), 81–90; https://doi.org/10.1016/0022-4596(81)90194-8.Suche in Google Scholar

25. Graf, G. G., Tin Alloys, and Tin Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.10.1002/14356007.a27_049Suche in Google Scholar

26. Murshed, M. M.; Fischer, R. X.; Gesing, T. M. The Role of the Pb2+ Lone Electron Pair for Bond Valence Sum Analysis in Mullite-type PbMBO4 (M = Al, Mn and Fe) Compounds. Z. Kristallogr. 2012, 227 (8), 580–584; https://doi.org/10.1524/zkri.2012.1483.Suche in Google Scholar

27. Murshed, M. M.; Nénert, G.; Gesing, T. M. Crystal Structure of Mullite-type PbMn0.5Al0.5BO4 Determined by Combined X-Ray and Neutron Diffraction Data. Z. Kristallogr.-New Cryst. Struct. 2012, 227 (3), 285–286; https://doi.org/10.1524/ncrs.2012.0181.Suche in Google Scholar

28. Gesing, T. M.; Mendive, C. B.; Curti, M.; Hansmann, D.; Nénert, G.; Kalita, P. E.; Lipinska, K. E.; Huq, A.; Cornelius, A. L.; Murshed, M. M. Structural Properties of Mullite-type Pb(Al1–xMnx)BO4. Z. Kristallogr. 2013, 228 (10), 532–543; https://doi.org/10.1524/zkri.2013.1640.Suche in Google Scholar

29. Vigouroux, J. P.; Husson, E.; Calvarin, G.; Dao, N. Q. Etude par spectroscopié vibrationnelle des oxydes Pb3O4, SnPb2O4 et SnPb(Pb2O4)2. Spectrochim. Acta A 1981, 38, 393–398; https://doi.org/10.1016/0584-8539(82)80013-5.Suche in Google Scholar

30. Spahr, D.; Stekiel, M.; Zimmer, D.; Bayarjargal, L.; Bunk, K.; Morgenroth, W.; Milman, V.; Refson, K.; Jochym, D.; Byrne, P. J. P.; Winkler, B. Pressure-Induced Pb-Pb and Phase Transition in Pb2SnO4. Acta Crystallogr. B 2020, 76, 979–991; https://doi.org/10.1107/s205252062001238x.Suche in Google Scholar PubMed PubMed Central

31. Swanson, H. E.; McMurdie, H. F.; Morris, M. C.; Evans, E. H.; Paretzkin, B. Lead Tin Oxide, Pb2SnO4. Natl. Bur. Stand. (U. S.) Monogr. 1972, 25 (10), 29–30.Suche in Google Scholar

32. Wang, X.; Liebau, F. Influence of Lone-Pair Electrons of Cations on Bond-Valence Parameters. Z. Kristallogr. 1996, 211 (7), 437–439.10.1524/zkri.1996.211.7.437Suche in Google Scholar

33. Wang, X.; Liebau, F. Studies on Bond and Atomic Valences. I. Correlation between Bond Valence and Bond Angles in SbIII Chalcogen Compounds: The Influence of Lone-Electron Pairs. Acta Crystallogr. B 1996, 52 (1), 7–15; https://doi.org/10.1107/s0108768195004472.Suche in Google Scholar

34. Liebau, F.; Wang, X. Stoichiometric Valence versus Structural Valence: Conclusions Drawn from a Study of the Influence of Polyhedron Distortion on Bond Valence Sums. Z. Kristallogr. 2005, 220 (7), 589–591; https://doi.org/10.1524/zkri.220.7.589.67103.Suche in Google Scholar

35. Wang, X.; Liebau, F. Influence of Polyhedron Distortions on Calculated Bond-Valence Sums for Cations with One Lone Electron Pair. Acta Crystallogr. B 2007, 63 (2), 216–228; https://doi.org/10.1107/s0108768106055911.Suche in Google Scholar PubMed

36. Wang, X.; Liebau, F. On the Optimization of Bond-Valence Parameters: Artifacts Conceal Chemical Effects. Acta Crystallogr. B 2009, 65 (1), 96–98; https://doi.org/10.1107/s010876810804086x.Suche in Google Scholar PubMed

37. Gesing, T. M.; Robben, L. Determination of the Average Crystallite Size and the Crystallite Size Distribution: The Envelope Function Approach EnvACS. J. Appl. Crystallogr. 2024. Submitted.10.1107/S1600576724007362Suche in Google Scholar

38. Juhas, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. L. PDFgetX3: A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions. J. Appl. Crystallogr. 2013, 46 (2), 560–566; https://doi.org/10.1107/s0021889813005190.Suche in Google Scholar

39. Rachinger, W. A Correction for the α1 α2 Doublet in the Measurement of Widths of X-Ray Diffraction Lines. Journal of Scientific Instruments 1948, 25, 254–255; https://doi.org/10.1088/0950-7671/25/7/125.Suche in Google Scholar

40. Gesing, T. M.; Murshed, M. M.; Schuh, S.; Thüringer, O.; Krämer, K.; Neudecker, T.; Mendive, C. B.; Robben, L. Nano-crystalline Precursor Formation, Stability, and Transformation to Mullite-type Visible-Light Photocatalysts. J. Mat. Sci. 2022, 57 (41), 19280–19299; https://doi.org/10.1007/s10853-022-07854-w.Suche in Google Scholar

41. Ghosh, K.; Murshed, M. M.; Fischer, M.; Gesing, T. M. Aluminum to Germanium Inversion in Mullite-type RAlGeO5: Characterization of a Rare Phenomenon for R = Y, Sm–Lu. J. Am. Ceram. Soc. 2022, 105 (1), 728–741; https://doi.org/10.1111/jace.18085.Suche in Google Scholar

42. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. 2005, 220 (5–6), 567–570; https://doi.org/10.1524/zkri.220.5.567.65075.Suche in Google Scholar

43. Refson, K.; Tulip, P. R.; Clark, S. J. Variational Density-Functional Perturbation Theory for Dielectrics and Lattice Dynamics. Phys. Rev. B 2006, 73 (15), 155114; https://doi.org/10.1103/physrevb.73.155114.Suche in Google Scholar

44. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406; https://doi.org/10.1103/physrevlett.100.136406.Suche in Google Scholar

45. Porezag, D.; Pederson, M. R. Infrared Intensities and Raman-Scattering Activities within Density-Functional Theory. Phys. Rev. B 1996, 54 (11), 7830–7836; https://doi.org/10.1103/physrevb.54.7830.Suche in Google Scholar PubMed

46. Gonze, X. First-Principles Responses of Solids to Atomic Displacements and Homogeneous Electric Fields: Implementation of a Conjugate-Gradient Algorithm. Phys. Rev. B 1997, 55 (16), 10337–10354; https://doi.org/10.1103/physrevb.55.10337.Suche in Google Scholar

47. Bach, H.; Schroeder, H.; Schaeffer, H. A. The Reaction Behaviour of Thin Lead Oxide Layers on Silica Glass. Thin Solid Films 1978, 48, 201–213; https://doi.org/10.1016/0040-6090(78)90242-0.Suche in Google Scholar

48. Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5 (1), 17–26; https://doi.org/10.1007/bf01349680.Suche in Google Scholar

49. Kroumova, E.; Aroyo, M. I.; Perez-Mato, J. M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondratschek, H. Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transit. 2003, 76 (1–2), 155–170; https://doi.org/10.1080/0141159031000076110.Suche in Google Scholar

50. Burgio, L.; Clark, R. J. H. Library of FT-Raman Spectra of Pigments, Minerals, Pigment Media and Varnishes, and Supplement to Existing Library of Raman Spectra of Pigments with Visible Excitation. Spectrochim. Acta 2001, 57, 1491–1521; https://doi.org/10.1016/s1386-1425(00)00495-9.Suche in Google Scholar PubMed

51. Terpstra, H. J.; De Groot, R. A.; Haas, C. The Electronic Structure of the Mixed Valence Compound Pb3O4. J. Phys. Chem. Solids 1997, 58 (4), 561–566; https://doi.org/10.1016/s0022-3697(96)00165-5.Suche in Google Scholar

52. Haynes, W. M.; Lide, D. R.; Bruno, T. J. In Section 9: Molecular Structure and Spectroscopy, CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2014; pp. 65–96.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0088).


Received: 2024-05-28
Accepted: 2024-06-12
Published Online: 2024-07-15
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2024-0088/html?lang=de
Button zum nach oben scrollen