Startseite Crystal structures with infinite chains based on antimony tartrate dimers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Crystal structures with infinite chains based on antimony tartrate dimers

  • Xiqu Wang EMAIL logo und Allan J. Jacobson
Veröffentlicht/Copyright: 22. September 2021

Abstract

Seven complex metal antimony tartrates have been synthesized in single crystal form by slowly evaporating aqueous solutions of potassium antimony tartrate (tartar emetic) and divalent metal nitrates or perchlorates. Crystal structures of these compounds all contain infinite chains formed by linking antimony tartrate dimers with divalent metal ions. While infinite chains of antimony tartrate dimers bridged by single Zn2+ ions or by double Mg2+ ions were reported previously, new types of chains with alternating single and double bridging cations are observed in this work.


Corresponding author: Xiqu Wang, Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5003, USA, E-mail:

Funding source: Robert A. Welch Foundation

Award Identifier / Grant number: E-0024

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by Robert A. Welch Foundation (Grant No. E-0024).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Supplementary materials

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 2101177 – 2101183. Copies of this information may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: 44 1223 336 033; ).

References

1. Martenson, J. Eigenthümliche Verbindungen des Brechweinsteins mit salpetersauren Salzen. Arch. Pharmazie 1869, 188, 198–202; https://doi.org/10.1002/ardp.18691880304.Suche in Google Scholar

2. Traube, H. Uber die Krystallform einiger weinsaurer Salze. Neues Jahrbuch Mineral. 1893, Beil.-Bd. VIII, 523–534.Suche in Google Scholar

3. Bohaty, L., Frohlich, R. Crystal-Growth, crystal-structure, optical, electrooptic and electrostrictive properties of the orthorhombic tartrato-antimonate (III) nitrate KZn[Sb2((+)–C4H2O6)2]NO3·5H2O (KZnSbTN). Z. Kristallogr. 1994, 209, 14–17; https://doi.org/10.1524/zkri.1994.209.1.14.Suche in Google Scholar

4. Wang, X., Makarenko, T., Jacobson, A. J. Synthesis and structural phase transitions of [Mg2Sb2(C4H2O6)2(H2O)8](ClO4)2·5H2O with complex homochiral chains. Z. Kristallogr. 2016, 231, 441–448; https://doi.org/10.1515/zkri-2016-1954.Suche in Google Scholar

5. Sheldrick, G. M. Shelxt–Integrated space-group and crystal-structure determination. Acta Crystallogr. A: Found. Adv. 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Suche in Google Scholar

6. Sheldrick, G. M. Crystal structure refinement with Shelxl. Acta Crystallogr. C: Struct. Chem. 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Suche in Google Scholar

7. Bruker AXS. Apex-II (version 2014.11-0); Bruker AXS Madison: WI, 2014.Suche in Google Scholar

8. Kamenar, B., Grdenic, D., Prout, C. K. The crystal and molecular structure of racemic potassium di-µ-tartrato-diantimonate(III) trihydrate (racemic “tartar emetic”). Acta Crystallogr. B 1970, 26, 181–188; https://doi.org/10.1107/s0567740870002133.Suche in Google Scholar

9. Palenik, R. C., Abboud, K. A., Palenik, G. J. Bond valence sums and structural studies of antimony complexes containing Sb bonded only to O ligands. Inorg. Chim. Acta. 2005, 358, 1034–1040; https://doi.org/10.1016/j.ica.2004.11.013.Suche in Google Scholar

10. Bohaty, L., Frohlich, R., Tebbe, K. F. Crystallography of the antimony tartrates of calcium, strontium and barium. Z. Kristallogr. 1982, 159, 21–22.Suche in Google Scholar

11. Sagatys, D. S., Smith, G., Lynch, D. E., Kennard, C. H. Structure of polymeric antimony silver(I) (+)-tartrate. J. Chem. Soc., Dalton Trans. 1991, 1991, 361–364; https://doi.org/10.1039/dt9910000361.Suche in Google Scholar

12. Gao, Q., Wang, X., Jacobson, A. J. Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit. Inorg. Chem. 2011, 50, 9073–9082; https://doi.org/10.1021/ic201274c.Suche in Google Scholar

13. Zhang, G. J., Xiao, D. R., Sun, D. Z., Chen, H. Y., He, J. H., Yuan, R., Wang, E. B. Bottom-up synthesis of three heterometallic coordination polymers with layered structures constructed from presynthesized [Sb2(tart)2]2− metalloligands. Solid State Sci. 2012, 14, 62–71; https://doi.org/10.1016/j.solidstatesciences.2011.10.017.Suche in Google Scholar

14. Bohaty, L., Held, P., Becker, P. Crystal growth, crystal structure and optical properties of calcium antimony tartrate nonahydrate, Ca[Sb2((+)C4H2O6)2]·9H2O. Cryst. Res. Technol. 2015, 50, 950–956; https://doi.org/10.1002/crat.201500269.Suche in Google Scholar

15. Bohaty, L., Held, P., Schneeberger, H., Zheng, T. Y., Becker, P. Crystal growth, crystal structure and pyroelectric properties of the polar hexagonal antimony tartrates MII[Sb2(C4H2O6)2]·2H2O (MII = Ca, Sr, Pb). Cryst. Res. Technol. 2015, 50, 482–489; https://doi.org/10.1002/crat.201500049.Suche in Google Scholar

16. Wang, X., Makarenko, T., Jacobson, A. J. Stacking changes of KLi[Sb2(C4H2O6)2] homochiral layers mediated by interlayer solvent molecules. Z. Kristallogr. 2017, 232, 689–695; https://doi.org/10.1515/zkri-2017-2047.Suche in Google Scholar

17. Bohaty, L., Matulkova, I., Cisarova, I., Nemec, I., Schneeberger, H., Kaminskii, A. A., Becker, P. Crystal growth, thermal expansion, pyroelectricity and vibrational spectroscopy of barium antimony tartrate, Ba[Sb2((+)C4H2O6)2]·3H2O. Opt. Mater. 2019, 91, 70–79; https://doi.org/10.1016/j.optmat.2019.02.051.Suche in Google Scholar

Received: 2021-08-04
Accepted: 2021-09-08
Published Online: 2021-09-22
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2047/html
Button zum nach oben scrollen