EuTMg2 (T = Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 – intermetallic compounds with orthorhombically distorted tetrahedral magnesium (cadmium) substructures
Abstract
The magnesium- and cadmium-rich intermetallic phases EuTMg2 (T = Rh, Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 were synthesized from the elements in sealed niobium or tantalum ampoules and with heat treatments in muffle or induction furnaces. The samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data. EuTMg2 (T = Pd, Ag, Pt, Au) and EuTCd2 (T = Pd, Pt, Au) crystallize with the MgCuAl2 type, space group Cmcm, while EuRhMg2, EuIrMg2 and CaRhMg2 adopt the YSiPd2 type, space group Pnma. The striking crystal chemical motif of both series of compounds are networks of puckered Mg(Cd) hexagons in ABAB stacking sequence that derive from the aristotype AlB2; however, with different tiling. Temperature dependent magnetic susceptibility and 151Eu Mössbauer spectroscopic measurements indicate stable divalent europium. Antiferromagnetic ordering sets in at 20.2 (EuIrMg2), 22.3 (EuPdMg2), 21.3 (EuAgMg2), 10.9 (EuPdCd2) and 15.5 K (EuPtCd2), respectively. The stable antiferromagnetic ground states are substantiated by metamagnetic transitions. The 151Eu isomer shifts show a linear correlation with the valence electron count for the whole series of EuTMg2, EuTCd2, EuTIn2 and EuTSn2 phases.
Acknowledgements
We thank Dipl.-Ing. J. Kösters for collecting the single crystal X-ray data.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Pöttgen, R., Hoffmann, R.-D. Metall 2004, 58, 557–561; https://doi.org/10.1016/s0030-4018(04)01027-2.Search in Google Scholar
2. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar
3. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar
4. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar
5. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. C., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257–2263; https://doi.org/10.1002/1521-3749(200011)626:11<2257::aid-zaac2257>3.0.co;2-#.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Search in Google Scholar
6. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Search in Google Scholar
7. Seidel, S., Pöttgen, R. Z. Naturforsch 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Search in Google Scholar
8. Zaremba, R., Rodewald, U. C., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2007, 138, 523–528; https://doi.org/10.1007/s00706-007-0663-9.Search in Google Scholar
9. Pöttgen, R. Handbook on the Physics and Chemistry of Rare Earths, Vol. 58. Elsevier: Amsterdam, 2020; pp. 1–38.10.1515/9783110654929Search in Google Scholar
10. Pöttgen, R. J. Mater. Chem. 1996, 6, 63–67; https://doi.org/10.1039/jm9960600063.Search in Google Scholar
11. Johrendt, D., Kotzyba, G., Trill, H., Mosel, B. D., Eckert, H., Fickenscher, T., Pöttgen, R. J. Solid State Chem. 2002, 164, 201–209; https://doi.org/10.1006/jssc.2001.9460.Search in Google Scholar
12. Pöttgen, R., Kotzyba, G., Görlich, E. A., Łątka, K., Dronskowski, R. J. Solid State Chem. 1998, 141, 352–364; https://doi.org/10.1006/jssc.1998.7947.Search in Google Scholar
13. Łątka, K., Kmieć, R., Pacyna, A. W., Fickenscher, Th., Hoffmann, R.-D., Pöttgen, R. Solid State Sci. 2004, 6, 301–309.10.1016/j.solidstatesciences.2004.01.006Search in Google Scholar
14. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25; https://doi.org/10.1021/ic00051a700.Search in Google Scholar
15. Johnscher, M., Kersting, M., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2013, 68b, 111–120; https://doi.org/10.5560/znb.2013-2317.Search in Google Scholar
16. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707–713; https://doi.org/10.1002/zaac.201200538.Search in Google Scholar
17. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar
18. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar
19. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar
20. Gulo, F., Köhler, J. Z. Anorg. Allg. Chem. 2015, 641, 557–560; https://doi.org/10.1002/zaac.201500026.Search in Google Scholar
21. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
22. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar
23. Corel Corporation. CorelDraw Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar
24. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar
25. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Search in Google Scholar
26. Moreau, J. M., Le Roy, J., Paccard, D. Acta Crystallogr. 1982, 38B, 2446–2448; https://doi.org/10.1107/s056774088200898x.Search in Google Scholar
27. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar
28. Petříček, V., Dušek, M., Palatinus, L. Jana2006, The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar
29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar
30. Perlitz, H., Westgren, A. Ark. Kemi Mineral. Geol. B 1943, 16, 1–5.Search in Google Scholar
31. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Search in Google Scholar
32. Iandelli, A. Z. Anorg. Allg. Chem. 1964, 330, 221–232; https://doi.org/10.1002/zaac.19643300315.Search in Google Scholar
33. Klemm, W., Kock, H., Mühlpfordt, W. Angew. Chem. Int. Ed. Engl. 1964, 3, 704–705; https://doi.org/10.1002/anie.196407043.Search in Google Scholar
34. Köster, W., Meixner, J. Z. Metallkd. 1965, 56, 695–703; https://doi.org/10.1515/ijmr-1965-561009.Search in Google Scholar
35. Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2000, 626, 28–35; https://doi.org/10.1002/(sici)1521-3749(200001)626:1<28::aid-zaac28>3.0.co;2-t.10.1002/(SICI)1521-3749(200001)626:1<28::AID-ZAAC28>3.0.CO;2-TSearch in Google Scholar
36. Zaremba, V. I., Kalychak, Y. M., Dubenskiy, V. P., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 152, 560–567; https://doi.org/10.1006/jssc.2000.8731.Search in Google Scholar
37. Zaremba, V. I., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 327–331; https://doi.org/10.1002/zaac.200400142.Search in Google Scholar
38. Doğan, A., Johrendt, D., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 451–456.10.1002/zaac.200400389Search in Google Scholar
39. Doğan, A., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2007, 62b, 610–612; https://doi.org/10.1287/opre.1070.0453.Search in Google Scholar
40. Murashova, E. V., Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Seropegin, Y. D. J. Alloys Compd. 2008, 454, 206–209; https://doi.org/10.1016/j.jallcom.2006.12.123.Search in Google Scholar
41. Malingowski, A. C., Kim, M., Liu, J., Wu, L., Aronson, M. C., Khalifah, P. G. J. Solid State Chem. 2013, 198, 308–315; https://doi.org/10.1016/j.jssc.2012.04.007.Search in Google Scholar
42. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar
43. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar
44. Radzieowski, M., Stegemann, F., Doerenkamp, C., Matar, S. F., Eckert, H., Dosche, C., Wittstock, G., Janka, O. Inorg. Chem. 2019, 58, 7010–7025; https://doi.org/10.1021/acs.inorgchem.9b00648.Search in Google Scholar
45. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur J. 2019, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Search in Google Scholar
46. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
47. Stein, S., Heletta, L., Block, T., Gerke, B., Pöttgen, R. Solid State Sci. 2017, 67, 64–71; https://doi.org/10.1016/j.solidstatesciences.2017.03.006.Search in Google Scholar
48. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar
49. Pöttgen, R., Kußmann, D. Z. Anorg. Allg. Chem. 2001, 627, 55–60; https://doi.org/10.1002/1521-3749(200101)627:1<55::aid-zaac55>3.0.co;2-2.10.1002/1521-3749(200101)627:1<55::AID-ZAAC55>3.0.CO;2-2Search in Google Scholar
50. Kalychak, Y. M., Galadzhun, Y. V., Stepien Damm, J. Z. Kristallogr. NCS 1997, 212, 292; https://doi.org/10.1524/ncrs.1997.212.1.292.Search in Google Scholar
51. Galadzhun, Y. V., Hoffmann, R.-D., Kotzyba, G., Künnen, B., Pöttgen, R. Eur. J. Inorg. Chem. 1999, 1999, 975–979; https://doi.org/10.1002/(sici)1099-0682(199906)1999:6<975::aid-ejic975>3.0.co;2-6.10.1002/(SICI)1099-0682(199906)1999:6<975::AID-EJIC975>3.0.CO;2-6Search in Google Scholar
52. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648–3657; https://doi.org/10.1039/c9dt00035f.Search in Google Scholar
53. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Naturforsch. 2020, 75b, 903–911; https://doi.org/10.1515/znb-2020-0046.Search in Google Scholar
54. Klenner, S., Reimann, M., Pöttgen, R. Z. Kristallogr. 2021, 236, 179–186.https://doi.org/10.1515/zkri-2021-2026.Search in Google Scholar
55. Čurlík, I., Giovannini, M., Gastaldo, F., Strydom, A. M., Reiffers, M., Sereni, J. G. J. Phys. Condens. Matter 2018, 30, 495802.10.1088/1361-648X/aae7aeSearch in Google Scholar
56. Klenner, S., Stegemann, F., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 106–113; https://doi.org/10.1002/zaac.201900167.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- EuTMg2 (T = Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 – intermetallic compounds with orthorhombically distorted tetrahedral magnesium (cadmium) substructures
- A europium kagome lattice in the solid solution Eu3−х Sr х Pt4Zn12 – first zinc representatives of the Gd3Ru4Al12 type
- CoSO4·H2O and its continuous transition compared to the compression properties of isostructural kieserite-type polymorphs
- TiO2 nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light
- Organic and Metalorganic Crystal Structures (Original Paper)
- A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties
- Structural, surface, and computational analysis of two vitamin-B1 crystals with sulfonimide-based anions
- Crystal structures with infinite chains based on antimony tartrate dimers
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- EuTMg2 (T = Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 – intermetallic compounds with orthorhombically distorted tetrahedral magnesium (cadmium) substructures
- A europium kagome lattice in the solid solution Eu3−х Sr х Pt4Zn12 – first zinc representatives of the Gd3Ru4Al12 type
- CoSO4·H2O and its continuous transition compared to the compression properties of isostructural kieserite-type polymorphs
- TiO2 nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light
- Organic and Metalorganic Crystal Structures (Original Paper)
- A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties
- Structural, surface, and computational analysis of two vitamin-B1 crystals with sulfonimide-based anions
- Crystal structures with infinite chains based on antimony tartrate dimers