Home EuTMg2 (T = Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 – intermetallic compounds with orthorhombically distorted tetrahedral magnesium (cadmium) substructures
Article
Licensed
Unlicensed Requires Authentication

EuTMg2 (T = Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 – intermetallic compounds with orthorhombically distorted tetrahedral magnesium (cadmium) substructures

  • Steffen Klenner , Maximilian Kai Reimann and Rainer Pöttgen EMAIL logo
Published/Copyright: September 13, 2021

Abstract

The magnesium- and cadmium-rich intermetallic phases EuTMg2 (T = Rh, Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 were synthesized from the elements in sealed niobium or tantalum ampoules and with heat treatments in muffle or induction furnaces. The samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data. EuTMg2 (T = Pd, Ag, Pt, Au) and EuTCd2 (T = Pd, Pt, Au) crystallize with the MgCuAl2 type, space group Cmcm, while EuRhMg2, EuIrMg2 and CaRhMg2 adopt the YSiPd2 type, space group Pnma. The striking crystal chemical motif of both series of compounds are networks of puckered Mg(Cd) hexagons in ABAB stacking sequence that derive from the aristotype AlB2; however, with different tiling. Temperature dependent magnetic susceptibility and 151Eu Mössbauer spectroscopic measurements indicate stable divalent europium. Antiferromagnetic ordering sets in at 20.2 (EuIrMg2), 22.3 (EuPdMg2), 21.3 (EuAgMg2), 10.9 (EuPdCd2) and 15.5 K (EuPtCd2), respectively. The stable antiferromagnetic ground states are substantiated by metamagnetic transitions. The 151Eu isomer shifts show a linear correlation with the valence electron count for the whole series of EuTMg2, EuTCd2, EuTIn2 and EuTSn2 phases.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for collecting the single crystal X-ray data.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pöttgen, R., Hoffmann, R.-D. Metall 2004, 58, 557–561; https://doi.org/10.1016/s0030-4018(04)01027-2.Search in Google Scholar

2. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar

3. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Search in Google Scholar

4. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

5. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. C., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257–2263; https://doi.org/10.1002/1521-3749(200011)626:11<2257::aid-zaac2257>3.0.co;2-#.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Search in Google Scholar

6. Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Z. Kristallogr. 2006, 221, 435–444; https://doi.org/10.1524/zkri.2006.221.5-7.435.Search in Google Scholar

7. Seidel, S., Pöttgen, R. Z. Naturforsch 2021, 76b, 263–274; https://doi.org/10.1515/znb-2021-0049.Search in Google Scholar

8. Zaremba, R., Rodewald, U. C., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2007, 138, 523–528; https://doi.org/10.1007/s00706-007-0663-9.Search in Google Scholar

9. Pöttgen, R. Handbook on the Physics and Chemistry of Rare Earths, Vol. 58. Elsevier: Amsterdam, 2020; pp. 1–38.10.1515/9783110654929Search in Google Scholar

10. Pöttgen, R. J. Mater. Chem. 1996, 6, 63–67; https://doi.org/10.1039/jm9960600063.Search in Google Scholar

11. Johrendt, D., Kotzyba, G., Trill, H., Mosel, B. D., Eckert, H., Fickenscher, T., Pöttgen, R. J. Solid State Chem. 2002, 164, 201–209; https://doi.org/10.1006/jssc.2001.9460.Search in Google Scholar

12. Pöttgen, R., Kotzyba, G., Görlich, E. A., Łątka, K., Dronskowski, R. J. Solid State Chem. 1998, 141, 352–364; https://doi.org/10.1006/jssc.1998.7947.Search in Google Scholar

13. Łątka, K., Kmieć, R., Pacyna, A. W., Fickenscher, Th., Hoffmann, R.-D., Pöttgen, R. Solid State Sci. 2004, 6, 301–309.10.1016/j.solidstatesciences.2004.01.006Search in Google Scholar

14. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25; https://doi.org/10.1021/ic00051a700.Search in Google Scholar

15. Johnscher, M., Kersting, M., Matar, S. F., Pöttgen, R. Z. Naturforsch. 2013, 68b, 111–120; https://doi.org/10.5560/znb.2013-2317.Search in Google Scholar

16. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707–713; https://doi.org/10.1002/zaac.201200538.Search in Google Scholar

17. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Search in Google Scholar

18. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

19. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150; https://doi.org/10.1524/zkri.1999.214.3.143.Search in Google Scholar

20. Gulo, F., Köhler, J. Z. Anorg. Allg. Chem. 2015, 641, 557–560; https://doi.org/10.1002/zaac.201500026.Search in Google Scholar

21. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

22. OriginLab Corp. OriginPro 2016G (version 9.3.2.303), 2016.Search in Google Scholar

23. Corel Corporation. CorelDraw Graphics Suite 2017 (version 19.0.0.328), 2017.Search in Google Scholar

24. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Search in Google Scholar

25. Brand, R. A. WinNormos for Igor6 (version for Igor6.2 or above: 22.02.2017); Universität Duisburg: Duisburg, Germany, 2017.Search in Google Scholar

26. Moreau, J. M., Le Roy, J., Paccard, D. Acta Crystallogr. 1982, 38B, 2446–2448; https://doi.org/10.1107/s056774088200898x.Search in Google Scholar

27. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

28. Petříček, V., Dušek, M., Palatinus, L. Jana2006, The Crystallographic Computing System; Institute of Physics: Praha, Czech Republic, 2006.Search in Google Scholar

29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1016/b978-0-12-415817-7.00037-2.Search in Google Scholar

30. Perlitz, H., Westgren, A. Ark. Kemi Mineral. Geol. B 1943, 16, 1–5.Search in Google Scholar

31. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491–494; https://doi.org/10.1515/znb-2005-0502.Search in Google Scholar

32. Iandelli, A. Z. Anorg. Allg. Chem. 1964, 330, 221–232; https://doi.org/10.1002/zaac.19643300315.Search in Google Scholar

33. Klemm, W., Kock, H., Mühlpfordt, W. Angew. Chem. Int. Ed. Engl. 1964, 3, 704–705; https://doi.org/10.1002/anie.196407043.Search in Google Scholar

34. Köster, W., Meixner, J. Z. Metallkd. 1965, 56, 695–703; https://doi.org/10.1515/ijmr-1965-561009.Search in Google Scholar

35. Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2000, 626, 28–35; https://doi.org/10.1002/(sici)1521-3749(200001)626:1<28::aid-zaac28>3.0.co;2-t.10.1002/(SICI)1521-3749(200001)626:1<28::AID-ZAAC28>3.0.CO;2-TSearch in Google Scholar

36. Zaremba, V. I., Kalychak, Y. M., Dubenskiy, V. P., Hoffmann, R.-D., Pöttgen, R. J. Solid State Chem. 2000, 152, 560–567; https://doi.org/10.1006/jssc.2000.8731.Search in Google Scholar

37. Zaremba, V. I., Hlukhyy, V., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 327–331; https://doi.org/10.1002/zaac.200400142.Search in Google Scholar

38. Doğan, A., Johrendt, D., Pöttgen, R. Z. Anorg. Allg. Chem. 2005, 631, 451–456.10.1002/zaac.200400389Search in Google Scholar

39. Doğan, A., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2007, 62b, 610–612; https://doi.org/10.1287/opre.1070.0453.Search in Google Scholar

40. Murashova, E. V., Tursina, A. I., Kurenbaeva, Z. M., Gribanov, A. V., Seropegin, Y. D. J. Alloys Compd. 2008, 454, 206–209; https://doi.org/10.1016/j.jallcom.2006.12.123.Search in Google Scholar

41. Malingowski, A. C., Kim, M., Liu, J., Wu, L., Aronson, M. C., Khalifah, P. G. J. Solid State Chem. 2013, 198, 308–315; https://doi.org/10.1016/j.jssc.2012.04.007.Search in Google Scholar

42. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

43. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

44. Radzieowski, M., Stegemann, F., Doerenkamp, C., Matar, S. F., Eckert, H., Dosche, C., Wittstock, G., Janka, O. Inorg. Chem. 2019, 58, 7010–7025; https://doi.org/10.1021/acs.inorgchem.9b00648.Search in Google Scholar

45. Stegemann, F., Block, T., Klenner, S., Zhang, Y., Fokwa, B. P. T., Timmer, A., Mönig, H., Doerenkamp, C., Eckert, H., Janka, O. Chem. Eur J. 2019, 25, 10735–10747; https://doi.org/10.1002/chem.201901867.Search in Google Scholar

46. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

47. Stein, S., Heletta, L., Block, T., Gerke, B., Pöttgen, R. Solid State Sci. 2017, 67, 64–71; https://doi.org/10.1016/j.solidstatesciences.2017.03.006.Search in Google Scholar

48. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar

49. Pöttgen, R., Kußmann, D. Z. Anorg. Allg. Chem. 2001, 627, 55–60; https://doi.org/10.1002/1521-3749(200101)627:1<55::aid-zaac55>3.0.co;2-2.10.1002/1521-3749(200101)627:1<55::AID-ZAAC55>3.0.CO;2-2Search in Google Scholar

50. Kalychak, Y. M., Galadzhun, Y. V., Stepien Damm, J. Z. Kristallogr. NCS 1997, 212, 292; https://doi.org/10.1524/ncrs.1997.212.1.292.Search in Google Scholar

51. Galadzhun, Y. V., Hoffmann, R.-D., Kotzyba, G., Künnen, B., Pöttgen, R. Eur. J. Inorg. Chem. 1999, 1999, 975–979; https://doi.org/10.1002/(sici)1099-0682(199906)1999:6<975::aid-ejic975>3.0.co;2-6.10.1002/(SICI)1099-0682(199906)1999:6<975::AID-EJIC975>3.0.CO;2-6Search in Google Scholar

52. Klenner, S., Heletta, L., Pöttgen, R. Dalton Trans. 2019, 48, 3648–3657; https://doi.org/10.1039/c9dt00035f.Search in Google Scholar

53. Klenner, S., Bönnighausen, J., Pöttgen, R. Z. Naturforsch. 2020, 75b, 903–911; https://doi.org/10.1515/znb-2020-0046.Search in Google Scholar

54. Klenner, S., Reimann, M., Pöttgen, R. Z. Kristallogr. 2021, 236, 179–186.https://doi.org/10.1515/zkri-2021-2026.Search in Google Scholar

55. Čurlík, I., Giovannini, M., Gastaldo, F., Strydom, A. M., Reiffers, M., Sereni, J. G. J. Phys. Condens. Matter 2018, 30, 495802.10.1088/1361-648X/aae7aeSearch in Google Scholar

56. Klenner, S., Stegemann, F., Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 106–113; https://doi.org/10.1002/zaac.201900167.Search in Google Scholar

Received: 2021-05-25
Accepted: 2021-07-19
Published Online: 2021-09-13
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2021-2031/html
Scroll to top button