Abstract
The crystal structure of new isostructural compounds MgCo2Ga5 and MgNi2Ga5 has been investigated using single-crystal X-ray diffraction. Both compounds represent a new type of structure: orthorhombic, space group Pnnm, oP16, with the following lattice parameters: a = 6.2700(2) Å, b = 6.6946(2) Å, c = 6.0789(2) Å (for MgCo2Ga5) and a = 6.2693(3) Å, b = 6.6968 Å, c = 6.0794 Å (for MgNi2Ga5). The MgCo2Ga5 and MgNi2Ga5 are closely related to the tetragonal structure of CoGa3 which crystallizes in the ht-IrIn3 type. The orthorhombic structures of MgCo2Ga5 and MgNi2Ga5 are derived from CoGa3 via a translationengleiche symmetry reduction of index 2. The symmetry reduction from P42/mnm to Pnnm causes that the 4c site splits into two sites 2c and 2d. The gallium atoms together with cobalt or nickel form 3D-nets with channels, in which magnesium atoms are inserted. The formation of these polyatomic nets is confirmed by distribution of electron localization function (ELF) and charges of atoms.
Funding source: National Science Centre, Poland
Award Identifier / Grant number: 2017/25/B/ST8/02179
Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Research funding: Funding for this research was provided by National Science Centre, Poland (No. 2017/25/B/ST8/02179).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Jain, I. P., Lal, C., Jain, A. Hydrogen storage in Mg: a most promising material. Int. J. Hydrogen. Energy 2010, 35, 5133. https://doi.org/10.1016/j.ijhydene.2009.08.088.Search in Google Scholar
2. Crivello, J.-C., Denys, R. V., Dornheim, M., Felderhoff, M., Grant, D. M., Huot, J., Jensen, T. R., de Jongh, P., Latroche, M., Walker, G. S., Webb, C. J., Yartys, V. A. Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 2016, 122, 85. https://doi.org/10.1007/s00339-016-9601-1.Search in Google Scholar
3. Pavlyuk, V., Marciniak, B., Chumak, I., Różycka-Sokołowska, E., Prochwicz, W., Kończyk, J. Crystal structure of new intermetallic compound Mg3Co2Ga7. J. Alloy Compd. 2007, 442, 96. https://doi.org/10.1016/j.jallcom.2006.12.153.Search in Google Scholar
4. Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Nitek, W., Lasocha, W., Chumak, I., Ehrenberg, H. A new monoclinic structure type for ternary gallide MgCoGa2. Acta. Crystallogr. 2020, C76, 541. https://doi.org/10.1107/s205322962000594x.Search in Google Scholar
5. Teslyuk, M. Y., Markiv, V. Y. New ternary Laves phases in systems containing Zn, Ga, In, and Ge. Sov. Phys. Crystallogr. 1962, 7, 103.Search in Google Scholar
6. Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Cichowicz, G., Cyranski, M. K., Chumak, I., Ehrenberg, H. New cubic cluster phases in the Mg–Ni–Ga system. Acta. Crystallogr. 2020, B76. https://doi.org/10.1107/S2052520620006423.Search in Google Scholar
7. CrysAlis PRO; UK Ltd., Agilent Technologies: Yarnton, Oxfordshire, England, 2011.Search in Google Scholar
8. Sheldrick, G. M. SHELXS, Program for the Solution of Crystal Structures; University of Gottingen: Germany, 1997.Search in Google Scholar
9. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen: Germany, 1997.Search in Google Scholar
10. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060. https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar
11. Andersen, O. K., Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571. https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar
12. Andersen, O. K., Pawlowska, Z., Jepsen, O. Illustration of the linear-muffin-tin-orbital tight-binding representation: compact orbitals and charge density in Si. Phys. Rev. B 1986, 34, 5253. https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar
13. von Barth, U., Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 1972, 5, 1629. https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar
14. Dronskowski, R., Blöchl, P. E. Crystal Orbital Hamilton Populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617. https://doi.org/10.1021/j100135a014.Search in Google Scholar
15. Becke, A. D., Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397. https://doi.org/10.1063/1.458517.Search in Google Scholar
16. Eck, B. wxDragon 1.6.6, 2013.Search in Google Scholar
17. Henkelman, G., Arnaldsson, A., Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354. https://doi.org/10.1016/j.commatsci.2005.04.010.Search in Google Scholar
18. Yu, M., Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. https://doi.org/10.1063/1.3553716.Search in Google Scholar
19. Viklund, P., Lidin, S., Berastegui, P., Häussermann, U. Variations of the FeGa3 structure type in the systems CoIn3−xZnx and CoGa3−xZnx. J. Solid State Chem. 2002, 165, 100. https://doi.org/10.1006/jssc.2001.9504.Search in Google Scholar
20. Pöttgen, R., Hoffmann, R.-D., Kotzyba, G. Structure, chemical bonding, and properties of CoIn3, RhIn3, and IrIn3. Z. Anorg. Allg. Chem. 1998, 624, 244. https://doi.org/10.1002/(sici)1521-3749(199802)624:2<244::aid-zaac244>3.0.co;2-g.10.1002/(SICI)1521-3749(199802)624:2<244::AID-ZAAC244>3.0.CO;2-GSearch in Google Scholar
21. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139.Search in Google Scholar
22. Krypyakevich, P. I. Structure Types of Intermetallic Compounds; Nauka: Moscow, 1977.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Original Paper
- From the Ritter pile to the aluminum ion battery – Peter Paufler’s academic genealogy
- New ternary MgCo2Ga5 and MgNi2Ga5 gallides
- A study on the limit of application of kinematical theory of X-ray diffraction
- Synthesis, revised crystal structures, and refractive indices of ABW-type CsMTiO4 (M = Al, Fe, Ga) and ANA-type CsTi1.10Si1.90O6.50, and the determination of the electronic polarizability of 4-coordinated Ti4+
- Molecular inorganic polymers: synthesis and crystal structures of KCl72H2SeO3 and CsCl7H2SeO3
- Artefacts from Ban Chiang, Thailand: pottery with hematite-red geometric patterns
- Theoretical and experimental solid state studies of Ethyl 1-benzyl-2-(thiophen-3-yl)-1H-benzo[d]imidazole-5-carboxylate
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Original Paper
- From the Ritter pile to the aluminum ion battery – Peter Paufler’s academic genealogy
- New ternary MgCo2Ga5 and MgNi2Ga5 gallides
- A study on the limit of application of kinematical theory of X-ray diffraction
- Synthesis, revised crystal structures, and refractive indices of ABW-type CsMTiO4 (M = Al, Fe, Ga) and ANA-type CsTi1.10Si1.90O6.50, and the determination of the electronic polarizability of 4-coordinated Ti4+
- Molecular inorganic polymers: synthesis and crystal structures of KCl72H2SeO3 and CsCl7H2SeO3
- Artefacts from Ban Chiang, Thailand: pottery with hematite-red geometric patterns
- Theoretical and experimental solid state studies of Ethyl 1-benzyl-2-(thiophen-3-yl)-1H-benzo[d]imidazole-5-carboxylate