Home Physical Sciences Synthesis, revised crystal structures, and refractive indices of ABW-type CsMTiO4 (M = Al, Fe, Ga) and ANA-type CsTi1.10Si1.90O6.50, and the determination of the electronic polarizability of 4-coordinated Ti4+
Article
Licensed
Unlicensed Requires Authentication

Synthesis, revised crystal structures, and refractive indices of ABW-type CsMTiO4 (M = Al, Fe, Ga) and ANA-type CsTi1.10Si1.90O6.50, and the determination of the electronic polarizability of 4-coordinated Ti4+

  • Jan Derk Groeneveld , Manfred Burianek , Johannes Birkenstock , Lennart A. Fischer , Robert D. Shannon and Reinhard X. Fischer EMAIL logo
Published/Copyright: September 28, 2020

Abstract

Single crystals of ABW-type CsAlTiO4 (CAT), CsFeTiO4 (CFT), CsGaTiO4 (CGT), and ANA-type CsTi1.1Si1.9O6.5 (CST) were grown and characterized by electron microprobe analyses, single-crystal X-ray diffraction, thermal analyses, and spindle-stage optical investigations to determine the electronic polarizability of 4-coordinated Ti4+, α([4]Ti4+). The crystal structure of CAT was confirmed to crystallize in the highest possible topological symmetry Imma (a = 8.9677(2) Å, b = 5.7322(1) Å, c = 9.9612(3) Å) with tetrahedrally coordinated Al and Ti equally distributed on Wyckoff position 8i. Twinning by reticular merohedry with a twin index of 2 was observed for most of the crystals resulting in a hexagonal twin lattice (a = 11.487(3) Å, c = 8.968(2) Å) with Laue symmetry 6/mmm. Refractive indices measured by immersion methods on an untwinned specimen are nx = 1.716(5), ny = 1.725(2), and nz = 1.727(1) with 2Vz = 127.1(6)°. The diffraction patterns of CFT and CGT clearly showed superstructure reflections causing a symmetry lowering of index 4 with a transformation according to 2a, b, c from Imma to Pmab with a = 18.3054(7) Å, b = 5.8083(2) Å, c = 9.9938(4) Å for CFT, and a = 18.2921(6) Å, b = 5.7636(2) Å, c = 9.9210(3) Å for CGT. Refractive indices for CGT are nx = 1.750(3), ny = 1.772(3), and nz = 1.776(2) with 2Vz = 132(1)°. The crystal structure of the ANA-type CsTi1.1Si1.9O6.5 was confirmed to crystallize in space group Ia3¯d (a = 13.8333(4) Å). The extra 0.5 O atoms are needed for charge compensation and to allow the sum of electronic polarizabilities to give a total electronic polarizability calculated from the refractive index n = 1.718(4). The electronic polarizability of [4]Ti4+ was calculated from the difference between the observed total polarizabilities (derived from the mean refractive indices of CAT and CGT) and the sum of electronic polarizabilities of cations and anions omitting the polarizability of Ti resulting in α([4]Ti4+) = 5.15(5) Å3.


Corresponding author: Reinhard X. Fischer, Universität Bremen, FB 5 Geowissenschaften, Klagenfurter Str. 2, 28359 Bremen, Germany, E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: FI442/21-2

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG) for funding this project under grant FI442/21-2, Anne Hübner (Bremen) for the EMPA preparation, Olaf Medenbach (Bochum) for providing optical equipment, and Ruth C. Shannon (Boulder) and two anonymous referees for their comments on the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We thank the Deutsche Forschungsgemeinschaft (DFG) for funding this project under grant FI442/21-2.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Baur, W. H., Fischer, R. X. Microporous and Other Framework Materials with Zeolite-type Structures; Landolt Börnstein New Series IV/14 subvolume B: Zeolite Structure Codes ABW to CZP; Baur, W. H., Fischer, R. X., Eds., 2000. Springer: Berlin.10.1007/b72483Search in Google Scholar

2. Baerlocher, C., McCusker, L. B. Database of zeolite structures, 2019.Available from: http://www.iza-structure.org/databases (accessed Feb 2020).Search in Google Scholar

3. Gatehouse, B. M. Structure of CsAlTiO4 – a compound with TiO4 tetrahedra. Acta Crystallogr. 1989, C45, 1674.10.1107/S010827018900418XSearch in Google Scholar

4. Roth, R. S., Waring, J. L. Phase equilibria in the ternary systems BaO:Al2O3:TiO2, BaO:MgO:TiO2, and Cs2O:Al2O3:TiO2. Ceram. Bull. 1982, 61, 333.Search in Google Scholar

5. Solomah, A. G., Odoj, R., Freiburg, C. Thermogravimetry/differential thermal analysis and phase identification of Cs2O · Al2O3 · 2TiO2 in the ternary system Cs2O-Al2O3-TiO2. Commun. Am. Ceram. Soc. 1984. C-50.10.1111/j.1151-2916.1984.tb19754.xSearch in Google Scholar

6. Kahlenberg, V., Fischer, R. X., Baur, W. H. Symmetry and structural relationships among ABW-type materials. Z. Kristallogr. 2001, 216, 489.10.1524/zkri.216.9.489.20350Search in Google Scholar

7. Baur, W. H., Fischer, R. X. ZeoBase, a new kind of crystal structure database. In 16th Int. Zeolite Conf., A. De Frede: Sorrento, Italy, 2010.Search in Google Scholar

8. Weller, M. T. Where zeolites and oxides merge: semi-condensed tetrahedral frameworks. J. Chem. Soc. Dalton Trans. 2000, 4227.10.1039/b003800hSearch in Google Scholar

9. Henry, P. F., Weller, M. T. CsFeSiO4: a maximum iron content zeotype. Chem. Comm. 1998, 2723.10.1039/a807741jSearch in Google Scholar

10. Henry, P. F., Hughes, R. W., Weller, M. T. Transition metal based zeotypes: inorganic materials at the complex oxide – zeolite border. Mat. Res. Symp.Proc. 2001, 658. G7.2.1.10.1557/PROC-658-GG7.2Search in Google Scholar

11. Fischer, R. X., Messner, T. Struplo, a new version of the structure drawing program 2013. Available fromwww.brass.uni-bremen.de.Search in Google Scholar

12. Balmer, M. L., Bunker, B. Waste forms based on Cs-loaded silicotitanates. Ceram. Trans. 1995, 61, 645.10.2172/86952Search in Google Scholar

13. Park, T. J., Garino, T. J., Nenoff, T. M., Rademacher, D., Navrotsky, A. The effect of vacancy and barium substitution on the stability of the cesium titanium silicate pollucite. J. Am. Ceram. Soc. 2011, 94, 3053.10.1111/j.1551-2916.2011.04521.xSearch in Google Scholar

14. McCready, D. E., Balmer, M. L., Keefer, K. D. Experimental and calculated X-ray powder diffraction data for cesium titanium silicate, CsTiSi2O6.5: a new zeolite. Powder Diffr. 1997, 12, 40.10.1017/S0885715600009416Search in Google Scholar

15. Balmer, M. L., Bunker, B. C., Wang, L. Q., Peden, C. H. F., Su, Y. Solid-state 29Si MAS NMR study of titanosilicates. J. Phys. Chem. B 1997, 101, 9170.10.1021/jp971429oSearch in Google Scholar

16. Balmer, M. L., Huang, Q., Wong-Ng, W., Roth, R. S., Santoro, A. Neutron and X-ray diffraction study of the crystal structure of CsTiSi2O6.5. J. Sol. St. Chem. 1997, 130, 97.10.1006/jssc.1997.7284Search in Google Scholar

17. Hahn, T., Ed. International Tables for Crystallography, vol. A; Kluwer Academic Publishers:Dordrecht, 2002.Search in Google Scholar

18. Hess, N. J., Balmer, M. L., Bunker, B. C. Ti XAS of a novel Cs-Ti silicate. J. Sol. St. Chem. 1997, 129, 206.10.1006/jssc.1996.7214Search in Google Scholar

19. Hess, N. J., Su, Y., Balmer, M. L. Evidence of edge-sharing TiO5 polyhedra in Ti-substituted pollucite, CsTixAl1-xSi2O6+x/2. J. Phys. Chem. B 2001, 105, 6805.10.1021/jp010285hSearch in Google Scholar

20. Su, Y., Balmer, M. L., Bunker, B. C. Raman spectroscopy studies of silicotitanates. J. Phys. Chem. B 2000, 104, 8160.10.1021/jp0018807Search in Google Scholar

21. Xu, H., Navrotsky, A., Balmer, M. L., Su, Y., Bitten, E. R. Energetics of substituted pollucites along the CsAlSi2O6-CsTiSi2O6.5 join: a high-temperature calorimetric study. J. Amer. Ceram. Soc. 2001, 84, 555.10.1111/j.1151-2916.2001.tb00697.xSearch in Google Scholar

22. Shannon, R. D., Fischer, R. X. Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices. I. Oxides and oxysalts. Amer. Mineral. 2016, 101, 2288.10.2138/am-2016-5730Search in Google Scholar

23. Grey, I. E., Madsen, I. C., Watts, J. A., Bursill, L. A., Kwiatkowska, J. New cesium titanate layer structure. J. Sol. St. Chem. 1985, 58, 350.10.1016/0022-4596(85)90217-8Search in Google Scholar

24. Pouchou, J. L., Pichoir, F. Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation; Heinrich, K. F. J., Newbury, D. E., Eds. Vol. 31, Springer: Boston, MA, USA, 1991.10.1007/978-1-4899-2617-3_4Search in Google Scholar

25. Sheldrick, G. M. Cell Now. Program for Unit Cell Determination; Georg-August-Universität Göttingen: Göttingen, 2004.Search in Google Scholar

26. Sheldrick, G. M. Shelxl-97, A Program for Crystal Structure Refinement; University of Goettingen: Göttingen, 1997.Search in Google Scholar

27. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

28. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837.10.1107/S0021889899006020Search in Google Scholar

29. Bloss, F. D. The Spindle Stage: Principles and Practice; Cambridge University Press: Cambridge, 1981.Search in Google Scholar

30. Medenbach, O. A new microrefractometer spindle-stage and its application. Fortschr. Mineral. 1985, 63, 111.Search in Google Scholar

31. Gunter, M. E., Downs, R. T., Barthelmehs, K. L., Evans, S. H., Pommier, C. J. S., Grow, J. S., Sanchez, M. S., Bloss, D. F. Optic properties of centimeter-sized crystals determined in air with the spindle stage using EXCALIBRW. Amer. Mineral. 2005, 90, 1648.10.2138/am.2005.1892Search in Google Scholar

32. Lab, C. Refractive index (matching) liquids, 2018. January 9, 2019; Available fromhttp://www.cargille.com/refractivestandards.shtml.Search in Google Scholar

33. Anderson, O. L. Optical properties of rock-forming minerals derived from atomic properties. Fortschr. Mineral. 1975, 52, 611.Search in Google Scholar

34. Eggleton, R. A. Gladstone-Dale constants for the major elements in silicates: coordination number, polarizability, and the Lorentz-Lorentz relation. Can. Mineral. 1991, 29, 525.Search in Google Scholar

35. Shannon, R. D., Fischer, R. X. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B 2006, 73, 1.10.1103/PhysRevB.73.235111Search in Google Scholar

36. Klaska, R., Jarchow, O. Die Kristallstruktur von RbSiAlO4. Naturwissenschaften 1973, 60, 299.10.1007/BF00624446Search in Google Scholar

37. Petříček, V., Dušek, M., Palatinus, L. Jana2006. Program for Structure Analysis of Crystals Periodic in Three or More Dimensions from Diffraction Data; Institute of Physics: Prague, Czech Republic, 2006.Search in Google Scholar

38. Newnham, R. E. Crystal structure and optical properties of pollucite. Amer. Mineral. 1967, 52, 1515.Search in Google Scholar

39. Kobayashi, H., Yanase, I., Mitamura, T. A new model for the pollucite thermal expansion mechanism. J. Amer. Ceram. Soc. 1997, 80, 2161.10.1111/j.1151-2916.1997.tb03104.xSearch in Google Scholar

40. Yanase, I., Kobayashi, H., Shibasaki, H., Mitamura, T. Tetragonal-to-cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. J. Amer. Ceram. Soc. 1997, 80, 2693.10.1111/j.1151-2916.1997.tb03175.xSearch in Google Scholar

41. Palmer, D. C., Dove, M. T., Ibberson, R. M., Powell, B. M. Structural behavior, crystal chemistry, and phase transitions in substituted leucite: high-resolution neutron powder diffraction studies. Am. Mineral. 1997, 82, 16.10.2138/am-1997-1-203Search in Google Scholar

42. Bloss, D. F. An Introduction to the Methods of Optical Crystallography; Holt, Rinehart and Winston: New York, USA, 1961; p. 294.Search in Google Scholar

43. Fischer, R. X., Burianek, M., Shannon, R. D. POLARIO, a computer program for calculating refractive indices from chemical compositions. Amer. Mineral. 2018, 103, 1345.10.2138/am-2018-6587Search in Google Scholar

44. Baur, W. H., Fischer, R. X. The floppiness of it all: mean bond lengths change with atomic displacement parameters; the flexibility of various coordination tetrahedra in zeolitic frameworks. An empirical structural study of bond lengths and angles. Chem. Mater. 2019, 31, 2401.10.1021/acs.chemmater.8b04919Search in Google Scholar

45. Armbruster, T., Lager, G. A. Defect structure of the spinel, Ni2.44Ti0.77O4. J. Phys. Chem. Sol. 1981, 42, 725.10.1016/0022-3697(81)90154-2Search in Google Scholar

46. Lager, G. A., Armbruster, T., Ross, F. K. Neutron powder diffraction study of defect spinel structures: tetrahedrally coordinated Ti4+ in Ni2.62Ti0.69O4 and Ni2.42Ti0.74Si0.05O4. J. Appl. Crystallogr. 1981, 14, 261.10.1107/S0021889881009321Search in Google Scholar

47. Wu, K. K., Brown, I. D. The crystal structure of ß-barium orthotitanate, ß-Ba2TiO4, and the bond strength – bond length curve of Ti-O. Acta Crystallogr. 1973, B29, 2009.10.1107/S0567740873005959Search in Google Scholar

48. Günter, J. R., Jameson, G. B. Orthorhombic barium orthotitanate, α′-Ba2TiO4. Acta Crystallogr. 1984, C40, 207.10.1107/S0108270184003619Search in Google Scholar

49. Kuang, X., Jing, X., Loong, C. K., Lachowski, E. E., Skakle, J. M. S., West, A. R. A new hexagonal 12-layer perovskite-related structure: Ba6R2Ti4O17 (R = Nd and Y). Chem. Mater. 2002, 14, 4359.10.1021/cm020374mSearch in Google Scholar

50. Gunawardane, R. P., Fletcher, J. G., Dissanayake, M. A. K. L., Howie, R. A., West, A. R. Crystal structure refinement of Li4TiO4 containing tetrahedrally coordinated Ti4+ and tetragonally packed oxide ions. J. Sol. St. Chem. 1994, 112, 70.10.1006/jssc.1994.1266Search in Google Scholar

51. Kissel, J., Hoppe, R. Zum Aufbau von Na4[TiO4] [1]. Z. Anorg. Allg. Chem. 1990, 582, 103.10.1002/zaac.19905820113Search in Google Scholar

52. Weiß, C., Hoppe, R. Was heißt eigentlich Festkörper? Neue molekulare Aspekte am Beispiel Rb2[TiO3] [1], [2]. Z. Anorg. Allg. Chem. 1996, 622, 1019.10.1002/zaac.19966220616Search in Google Scholar

53. Schartau, W., Hoppe, R. Rb2TiO3, ein neues Oxotitanat mit der Koordinationszahl 4. Z. Anorg. Allg. Chem. 1974, 408, 60.10.1002/zaac.19744080110Search in Google Scholar

54. Weiß, C., Hoppe, R. Unerwartete Strukturverwandtschaft: Das neue Orthotitanat Rb3NaTiO4. Z. Anorg. Allg. Chem. 1996, 622, 603.10.1002/zaac.19966220405Search in Google Scholar

55. Kissel, J., Hoppe, R. Zum Aufbau von K6Ti2O7 [1]. J. Less-Common Metals 1990, 158, 327.10.1016/0022-5088(90)90068-USearch in Google Scholar

56. Bernet, K., Kissel, J., Hoppe, R. Zur Isotypie von Titanaten mit Silicaten: Über Cs2Li2[SiO4] [1] und Cs2Li2[TiO4] [2]. Z. Anorg. Allg. Chem. 1991, 593, 17.10.1002/zaac.19915930104Search in Google Scholar

57. Baur, W. H., Fischer, R. X. On the significance of small deviations from higher symmetry. Mineral. Mag. 2003, 67, 793.10.1180/0026461036740135Search in Google Scholar

58. Baur, W. H., Tillmanns, E. How to avoid unnecessarily low symmetry in crystal structure determination. Acta Crystallogr. 1986, B42, 95.10.1107/S0108768186098518Search in Google Scholar

59. Korchemkin, I. V., Pet’kov, V. I., Markin, A. V., Smirnova, N. N., Borovikova, E. Y. Thermodynamic and structural investigation of caesium-nickel monophophate CsNiPO4. J. Chem. Thermodynamics 2019, 131, 175.10.1016/j.jct.2018.10.006Search in Google Scholar

60. Henry, P. F., Hughes, E. M., Weller, M. T. Synthesis and structural characterisation of CsCoPO4-ABW. J. Chem. Soc., Dalton Trans. 2000, 555.10.1039/a906478hSearch in Google Scholar

61. Blum, D., Durif, A., Averbuch-Pouchot, M. T. A. Crystal structures of the three forms of CsZnPO4. Ferroelectrics 1986, 69, 283.10.1080/00150198608008201Search in Google Scholar

62. Kruglik, A. I., Simonov, M. A., Aleksandrov, K. S. Crystal structure of the low-temperature III phase of lithium ammonium sulfate. Sov. Phys. Crystallogr. 1978, 23, 274.Search in Google Scholar

63. Mashiyama, H., Kasano, H. Refined crystal structure of LiNH4SO4 including hydrogen atoms in phases II and III. J. Phys. Soc. Japan 1993, 62, 155.10.1143/JPSJ.62.155Search in Google Scholar

64. Balmer, M. L., Su, Y., Grey, I. E., Santoro, A., Roth, R. S., Huang, Q., Hess, N., Bunker, B. C. The structure and properties of two new silicotitanate zeolites. Mater. Res. Soc. Symp. Proc. 1997, 465, 449.10.1557/PROC-465-449Search in Google Scholar

65. Garino, T. J., Nenoff, T. M., Park, T. J., Navrotsky, A. The crystallization of Ba-substituted CsTiSi2O6.5 pollucite using CsTiSi2O6.5 seed crystals. J. Amer. Ceram. Soc. 2009, 92, 2144.10.1111/j.1551-2916.2009.03164.xSearch in Google Scholar

66. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Comm. Math. Chem. MATCH 1980, 9, 209.Search in Google Scholar

67. Shannon, R. D., Fischer, R. X. Empirical electronic polarizabilities for use in refractive index measurements III. Structures with short [5]Ti-O and vanadyl bonds. Can. Mineral. 2020. In press.10.3749/canmin.2000046Search in Google Scholar

Received: 2020-05-06
Accepted: 2020-08-21
Published Online: 2020-09-28
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0056/html
Scroll to top button