Home Physical Sciences New ternary MgCo2Ga5 and MgNi2Ga5 gallides
Article
Licensed
Unlicensed Requires Authentication

New ternary MgCo2Ga5 and MgNi2Ga5 gallides

  • Nazar Pavlyuk , Grygoriy Dmytriv , Volodymyr Pavlyuk EMAIL logo , Beata Rożdżyńska-Kiełbik , Alina Gil , Ihor Chumak and Helmut Ehrenberg
Published/Copyright: August 17, 2020

Abstract

The crystal structure of new isostructural compounds MgCo2Ga5 and MgNi2Ga5 has been investigated using single-crystal X-ray diffraction. Both compounds represent a new type of structure: orthorhombic, space group Pnnm, oP16, with the following lattice parameters: a = 6.2700(2) Å, b = 6.6946(2) Å, c = 6.0789(2) Å (for MgCo2Ga5) and a = 6.2693(3) Å, b = 6.6968 Å, c = 6.0794 Å (for MgNi2Ga5). The MgCo2Ga5 and MgNi2Ga5 are closely related to the tetragonal structure of CoGa3 which crystallizes in the ht-IrIn3 type. The orthorhombic structures of MgCo2Ga5 and MgNi2Ga5 are derived from CoGa3 via a translationengleiche symmetry reduction of index 2. The symmetry reduction from P42/mnm to Pnnm causes that the 4c site splits into two sites 2c and 2d. The gallium atoms together with cobalt or nickel form 3D-nets with channels, in which magnesium atoms are inserted. The formation of these polyatomic nets is confirmed by distribution of electron localization function (ELF) and charges of atoms.


Corresponding author: Volodymyr Pavlyuk, Department of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv, Ukraine; and Institute of Chemistry, Jan Dlugosz University in Czestochowa, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland, E-mail:

Award Identifier / Grant number: 2017/25/B/ST8/02179

  1. Author contributions: The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

  2. Research funding: Funding for this research was provided by National Science Centre, Poland (No. 2017/25/B/ST8/02179).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jain, I. P., Lal, C., Jain, A. Hydrogen storage in Mg: a most promising material. Int. J. Hydrogen. Energy 2010, 35, 5133. https://doi.org/10.1016/j.ijhydene.2009.08.088.Search in Google Scholar

2. Crivello, J.-C., Denys, R. V., Dornheim, M., Felderhoff, M., Grant, D. M., Huot, J., Jensen, T. R., de Jongh, P., Latroche, M., Walker, G. S., Webb, C. J., Yartys, V. A. Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 2016, 122, 85. https://doi.org/10.1007/s00339-016-9601-1.Search in Google Scholar

3. Pavlyuk, V., Marciniak, B., Chumak, I., Różycka-Sokołowska, E., Prochwicz, W., Kończyk, J. Crystal structure of new intermetallic compound Mg3Co2Ga7. J. Alloy Compd. 2007, 442, 96. https://doi.org/10.1016/j.jallcom.2006.12.153.Search in Google Scholar

4. Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Nitek, W., Lasocha, W., Chumak, I., Ehrenberg, H. A new monoclinic structure type for ternary gallide MgCoGa2. Acta. Crystallogr. 2020, C76, 541. https://doi.org/10.1107/s205322962000594x.Search in Google Scholar

5. Teslyuk, M. Y., Markiv, V. Y. New ternary Laves phases in systems containing Zn, Ga, In, and Ge. Sov. Phys. Crystallogr. 1962, 7, 103.Search in Google Scholar

6. Pavlyuk, N., Dmytriv, G., Pavlyuk, V., Rozdzynska-Kielbik, B., Cichowicz, G., Cyranski, M. K., Chumak, I., Ehrenberg, H. New cubic cluster phases in the Mg–Ni–Ga system. Acta. Crystallogr. 2020, B76. https://doi.org/10.1107/S2052520620006423.Search in Google Scholar

7. CrysAlis PRO; UK Ltd., Agilent Technologies: Yarnton, Oxfordshire, England, 2011.Search in Google Scholar

8. Sheldrick, G. M. SHELXS, Program for the Solution of Crystal Structures; University of Gottingen: Germany, 1997.Search in Google Scholar

9. Sheldrick, G. M. SHELXL-97, Program for Crystal Structure Refinement; University of Gottingen: Germany, 1997.Search in Google Scholar

10. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060. https://doi.org/10.1103/physrevb.12.3060.Search in Google Scholar

11. Andersen, O. K., Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571. https://doi.org/10.1103/physrevlett.53.2571.Search in Google Scholar

12. Andersen, O. K., Pawlowska, Z., Jepsen, O. Illustration of the linear-muffin-tin-orbital tight-binding representation: compact orbitals and charge density in Si. Phys. Rev. B 1986, 34, 5253. https://doi.org/10.1103/physrevb.34.5253.Search in Google Scholar

13. von Barth, U., Hedin, L. A local exchange-correlation potential for the spin polarized case. J. Phys. C 1972, 5, 1629. https://doi.org/10.1088/0022-3719/5/13/012.Search in Google Scholar

14. Dronskowski, R., Blöchl, P. E. Crystal Orbital Hamilton Populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617. https://doi.org/10.1021/j100135a014.Search in Google Scholar

15. Becke, A. D., Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397. https://doi.org/10.1063/1.458517.Search in Google Scholar

16. Eck, B. wxDragon 1.6.6, 2013.Search in Google Scholar

17. Henkelman, G., Arnaldsson, A., Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354. https://doi.org/10.1016/j.commatsci.2005.04.010.Search in Google Scholar

18. Yu, M., Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111. https://doi.org/10.1063/1.3553716.Search in Google Scholar

19. Viklund, P., Lidin, S., Berastegui, P., Häussermann, U. Variations of the FeGa3 structure type in the systems CoIn3−xZnx and CoGa3−xZnx. J. Solid State Chem. 2002, 165, 100. https://doi.org/10.1006/jssc.2001.9504.Search in Google Scholar

20. Pöttgen, R., Hoffmann, R.-D., Kotzyba, G. Structure, chemical bonding, and properties of CoIn3, RhIn3, and IrIn3. Z. Anorg. Allg. Chem. 1998, 624, 244. https://doi.org/10.1002/(sici)1521-3749(199802)624:2<244::aid-zaac244>3.0.co;2-g.10.1002/(SICI)1521-3749(199802)624:2<244::AID-ZAAC244>3.0.CO;2-GSearch in Google Scholar

21. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139.Search in Google Scholar

22. Krypyakevich, P. I. Structure Types of Intermetallic Compounds; Nauka: Moscow, 1977.Search in Google Scholar

Received: 2020-05-20
Accepted: 2020-07-09
Published Online: 2020-08-17
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0059/html
Scroll to top button