Home The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
Article
Licensed
Unlicensed Requires Authentication

The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)

  • Stefan Greiner , Sabine Zitzer , Sabine Strobel , Peter S. Berdonosov and Thomas Schleid EMAIL logo
Published/Copyright: September 2, 2020

Abstract

The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) with the composition Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu) has been synthesized via solid-state reactions. For these conversions mixtures of the respective rare-earth metal(III) oxides, tellurium dioxide and sodium chloride as flux and reactant were prepared, intimately ground and heated for 5 days at 1225 K. The almost colorless single crystals were characterized via single-crystal X-ray diffractometry. In the monoclinic crystal structure of these compounds two crystallographically different rare-earth metal(III), but only one sodium cation sites occur. [REO8]13− polyhedra around both RE3+ positions as well as sodium-centered polyhedra [NaO4Cl4]8− form layers via different connectivity modes. These layers spread out parallel to the (001) plane and arrange alternatingly resulting in the three-dimensional network of the Na2RE3Cl3[TeO3]4 structure, where the Te4+ lone-pair cations at two different sites work as linkers by forming isolated ψ1-tetrahedra [TeO3]2−. Some of these compounds were represented before in different settings of space group C2/c. Now the complete series of the Na2RE3Cl3[TeO3]4 representatives with RE = Y, La–Nd, Sm–Lu is described consistently for a better comparison and understanding. Additionally, a single crystal of Na2Pr3Cl3[TeO3]4 was measured via energy dispersive X-ray analysis to verify the included elements, powder samples of Na2Nd3Cl3[TeO3]4 were characterized by X-ray diffractometer data for a phase-purity check and a single-crystal Raman spectrum of Na2Yb3Cl3[TeO3]4 served for proving the signature of discrete [TeO3]2− anions.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Thomas Schleid, Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569Stuttgart, Germany, E-mail:

Acknowledgments

We thank Dr. Falk Lissner and Dr. Ingo Hartenbach for the single-crystal X-ray diffraction measurements. Furthermore, we are indebted to Felix C. Goerigk (M.Sc.) for the energy dispersive X-ray analyses (EDXS), Kevin U. Bareiß (M.Sc.) for recording the single-crystal Raman spectra, and Philip L. Russ (M.Sc.) for carrying out powder X-ray diffractometry (PXRD). In addition, we are grateful for the financial support of our research by the Federal State of Baden-Württemberg (Stuttgart).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wontcheu, J., Schleid, T. Z. Anorg. Allg. Chem. 2006, 632, 645–651; https://doi.org/10.1002/zaac.200500513.10.1002/zaac.200500513Search in Google Scholar

2. Wontcheu, J., Schleid, T. Z. Anorg. Allg. Chem. 2003, 629, 1463–1465; https://doi.org/10.1002/zaac.200300105.10.1002/zaac.200300105Search in Google Scholar

3. Wontcheu, J., Dissertation, Universität Stuttgart, 2004.Search in Google Scholar

4. Krügermann, I., Wickleder, M. S., Wontcheu, J., Schleid, T. Z. Anorg. Allg. Chem. 2006, 632, 901–904; https://doi.org/10.1002/zaac.200600016.10.1002/zaac.200600016Search in Google Scholar

5. Krügermann, I., Dissertation, Universität Köln, 2002.Search in Google Scholar

6. Krügermann, I., Wickleder, M. S. Z. Anorg. Allg. Chem. 2002, 628, 2197; https://doi.org/10.1002/1521-3749(200209)628:9/10<2197::aid-zaac11112197>3.0.co;2-3.10.1002/1521-3749(200209)628:9/10<2197::AID-ZAAC11112197>3.0.CO;2-3Search in Google Scholar

7. Chou, S.-C., Dissertation, Universität Stuttgart, 2015.Search in Google Scholar

8. Harrison, W. T. A. Acta Crystallogr. 2000, C 56, 627–628; https://doi.org/10.1107/s0108768100003165.10.1107/S0108270100003164Search in Google Scholar

9. Wickleder, M. S. Z. Anorg. Allg. Chem. 2000, 626, 547–551; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<547::aid-zaac547>3.0.co;2-v.10.1002/(SICI)1521-3749(200002)626:2<547::AID-ZAAC547>3.0.CO;2-VSearch in Google Scholar

10. Krügermann, I., Wickleder, M. S. J. Solid State Chem. 2002, 167, 113–118; https://doi.org/10.1006/jssc.2002.9629.10.1006/jssc.2002.9629Search in Google Scholar

11. Gschneidner, K. A.Jr., Bünzli, J.-C. G., Pecharsky, V. K., Handbook on the Physics and Chemistry of Rare Earths, Vol. 35; Elsevier: Amsterdam, 2005.Search in Google Scholar

12. Höss, P., Meier, S. F., Schleid, T. Z. Anorg. Allg. Chem. 2013, 639, 2548–2553; https://doi.org/10.1002/zaac.201300399.10.1002/zaac.201300399Search in Google Scholar

13. Höss, P., Dissertation, Universität Stuttgart, 2009.Search in Google Scholar

14. Meier, S. F., Höss, P., Schleid, T. Z. Anorg. Allg. Chem. 2009, 635, 768–775; https://doi.org/10.1002/zaac.200900030.10.1002/zaac.200900030Search in Google Scholar

15. Song, S. Y., Lee, D. W., Ok, K. M. Inorg. Chem. 2014, 53, 7040–7046; https://doi.org/10.1021/ic501009c.10.1021/ic501009cSearch in Google Scholar

16. Chou, S.-C., Schleid, T. Z. Kristallogr. 2014, S 34, 131–131.10.1177/0271121414554595Search in Google Scholar

17. Meier, S. F., Schleid, T. Z. Naturforsch. 2004, 59 b, 881–888; https://doi.org/10.1515/znb-2004-0802.10.1515/znb-2004-0802Search in Google Scholar

18. Weber, F. A., Meier, S. F., Schleid, T. Z. Anorg. Allg. Chem. 2001, 627, 2225–2231; https://doi.org/10.1002/1521-3749(200109)627:9<2225::aid-zaac2225>3.0.co;2-d.10.1002/1521-3749(200109)627:9<2225::AID-ZAAC2225>3.0.CO;2-DSearch in Google Scholar

19. Meier, S. F., Schleid, T. Z. Naturforsch. 2005, 60 b, 720–726; https://doi.org/10.1515/znb-2005-0704.10.1515/znb-2005-0704Search in Google Scholar

20. Höss, P., Schleid, T. Z. Anorg. Allg. Chem. 2007, 633, 1391–1396; https://doi.org/10.1002/zaac.200700074.10.1002/zaac.200700074Search in Google Scholar

21. Kim, Y., Lee, D. W., Ok, K. M. Inorg. Chem. 2015, 54, 389–395; https://doi.org/10.1021/ic502724n.10.1021/ic502724nSearch in Google Scholar

22. Boukharrata, N. J., Laval, J.-P., Thomas, P. Acta Crystallogr. 2008, C 64, i57–i61. https://doi.org/10.1107/S0108270108017150.10.1107/S0108270108017150Search in Google Scholar

23. Meier, S. F., Schleid, T. Z. Anorg. Allg. Chem. 2002, 628, 526–528; https://doi.org/10.1002/1521-3749(200203)628:3<526::aid-zaac526>3.0.co;2-0.10.1002/1521-3749(200203)628:3<526::AID-ZAAC526>3.0.CO;2-0Search in Google Scholar

24. Berdonosov, P. S., Charkin, D. O., Kusainova, A. M., Hervoches, C. H., Dolgikh, V. A., Lightfoot, P. Solid State Sci. 2000, 2, 553–562; https://doi.org/10.1016/s1293-2558(00)01065-7.10.1016/S1293-2558(00)01065-7Search in Google Scholar

25. Nikiforov, G. B., Kusainova, A. M., Berdonosov, P. S., Dolgikh, V. A., Lightfoot, P. J. Solid State Chem. 1999, 146, 473–477; https://doi.org/10.1006/jssc.1999.8395.10.1006/jssc.1999.8395Search in Google Scholar

26. Tarasov, I. V., Dolgikh, V. A., Akselrud, L. G., Berdonosov, P. S., Ponovkin, B. A. Zh. Neorgan. Khim. 1996, 146, 1243–1247.Search in Google Scholar

27. Meier, S. F., Schleid, T. Z. Anorg. Allg. Chem. 2003, 629, 1575–1580; https://doi.org/10.1002/zaac.200300153.10.1002/zaac.200300153Search in Google Scholar

28. Meier, S. F., Schleid, T. Z. Anorg. Allg. Chem. 2006, 632, 1759–1767; https://doi.org/10.1002/zaac.200600115.10.1002/zaac.200600115Search in Google Scholar

29. Zitzer, S., Schleifenbaum, F., Schleid, T. Z. Naturforsch. 2014, 69 b, 150–158; https://doi.org/10.5560/znb.2014-3274.10.5560/znb.2014-3274Search in Google Scholar

30. Charkin, D. O., Zitzer, S., Greiner, S., Dorofeev, S. G., Olenev, A. V., Berdonosov, P. S., Schleid, T., Dolgikh, V. A. Z. Anorg. Allg. Chem. 2017, 643, 1654–1660; https://doi.org/10.1002/zaac.201700227.10.1002/zaac.201700227Search in Google Scholar

31. Zitzer, S., Dissertation, Universität Stuttgart, 2012.Search in Google Scholar

32. Greiner, S., Dissertation, Universität Stuttgart, 2018.Search in Google Scholar

33. Zachariasen, W. H. Acta Crystallogr. 1949, 2, 60–62; https://doi.org/10.1107/s0365110x49000138.10.1107/S0365110X49000138Search in Google Scholar

34. Eick, H. A. J. Am. Chem. Soc. 1958, 80, 43–44; https://doi.org/10.1021/ja01534a012.10.1021/ja01534a012Search in Google Scholar

35. Drafall, L. E., McCarthy, G. J., Sipe, C. A., White, W. B. Proc. Rare-Earth Res. Conf. 1974, 11, 954–959.Search in Google Scholar

36. Eick, H. A. Acta Crystallogr. 1960, 13, 161–161, https://doi.org/10.1107/s0365110x60000339.10.1107/S0365110X60000339Search in Google Scholar

37. Guittard, M., Flahaut, J., Domange, L. Acta Crystallogr. 1966, 21, 832–832, https://doi.org/10.1107/s0365110x66003967.10.1107/S0365110X66003967Search in Google Scholar

38. Weber, F. A., Geyer, A. H., Djendjur, P., Schleid, T. Z. Naturforsch. 2020, 75 b, to be submitted for publication.Search in Google Scholar

39. Shannon, R. D. Acta Crystallogr. 1976, A 32, 751–767; https://doi.org/10.1107/s0567739476001551.10.1107/S0567739476001551Search in Google Scholar

40. Lindqvist, O. Acta Chem. Scand. 1968, 22, 977–982; https://doi.org/10.3891/acta.chem.scand.22-0977.10.3891/acta.chem.scand.22-0977Search in Google Scholar

41. Wondratschek, H., Müller, U. International Tables for Crystallography; Volume A Space-Group Symmetry, 5th ed.; Kluwer Academic Publishers: Dordrecht, Boston, London, 2005.Search in Google Scholar

42. Zitzer, S., Schleid, T. Z. Anorg. Allg. Chem. 2010, 636, 1050–1055; https://doi.org/10.1002/zaac.201000014.10.1002/zaac.201000014Search in Google Scholar

43. NSS Software Version 3.1, Thermo Fisher Scientific Inc., Madison, WI (USA), 2003.Search in Google Scholar

44. Kuo, Y. B., Scheld, W., Hoppe, R. Z. Kristallogr. 1983, 164, 121–127; https://doi.org/10.1524/zkri.1983.164.1-2.121.10.1524/zkri.1983.164.1-2.121Search in Google Scholar

45. Hashimoto, Y., Wakeshima, M., Hinatsu, Y. J. Solid State Chem. 2003, 176, 266–272; https://doi.org/10.1016/j.jssc.2003.08.001.10.1016/j.jssc.2003.08.001Search in Google Scholar

46. Brüesch, P., Schüler, C. J. Phys. Chem. Sol. 1971, 32, 1025–1038; https://doi.org/10.1016/s0022-3697(71)80347-5.10.1016/S0022-3697(71)80347-5Search in Google Scholar

47. Gondrand, M., Brunel, M., de Bergevin, F. Acta Crystallogr. 1972, B 28, 722–726; https://doi.org/10.1107/s0567740872003085.10.1107/S0567740872003085Search in Google Scholar

48. Habenschuss, A., Spedding, F. H. Cryst. Struct. Commun. 1978, 7, 535–541.Search in Google Scholar

49. Habenschuss, A., Spedding, F. H. Cryst. Struct. Commun. 1979, 8, 511–516.Search in Google Scholar

50. Brixner, L. H., Moore, E. P. Acta Crystallogr. 1983, C 39, 1316–1316. https://doi.org/10.1107/S0108270183008355.10.1107/S0108270183008355Search in Google Scholar

51. Meyer, G., Schleid, T. Z. Anorg. Allg. Chem. 1986, 533, 181–185; https://doi.org/10.1002/zaac.19865330222.10.1002/zaac.19865330222Search in Google Scholar

52. Brandt, G., Diehl, R. Mater. Res. Bull. 1974, 9, 411–420; https://doi.org/10.1016/0025-5408(74)90208-6.10.1016/0025-5408(74)90208-6Search in Google Scholar

53. Garcia, E., Corbett, J. D., Ford, J. E., Vary, W. J. Inorg. Chem. 1985, 24, 494–496; https://doi.org/10.1021/ic00198a013.10.1021/ic00198a013Search in Google Scholar

54. Morosin, B. J. Chem. Phys. 1968, 49, 3007–3012; https://doi.org/10.1063/1.1670543.10.1063/1.1670543Search in Google Scholar

55. Templeton, D. H., Carter, G. F. J. Phys. Chem. 1954, 58, 940–944; https://doi.org/10.1021/j150521a002.10.1021/j150521a002Search in Google Scholar

56. Forrester, J. D., Zalkin, A., Templeton, D. H., Wallmann, J. C. Inorg. Chem. 1964, 3, 185–188; https://doi.org/10.1021/ic50012a007.10.1021/ic50012a007Search in Google Scholar

57. Lissner, F., Krämer, K., Schleid, T., Meyer, G., Hu, Z.-W., Kaindl, G. Z. Anorg. Allg. Chem. 1994, 620, 444–450; https://doi.org/10.1002/zaac.19946200307.10.1002/zaac.19946200307Search in Google Scholar

58. Schleid, T., Meyer, G. Z. Anorg. Allg. Chem. 1990, 590, 103–110; https://doi.org/10.1002/zaac.19905900111.10.1002/zaac.19905900111Search in Google Scholar

59. Wickleder, M. S., Meyer, G. Z. Anorg. Allg. Chem. 1995, 621, 546–549; https://doi.org/10.1002/zaac.19956210408.10.1002/zaac.19956210408Search in Google Scholar

60. Wickleder, M. S., Güdel, H. U, Armbruster, T., Meyer, G. Z. Anorg. Allg. Chem. 1996, 622, 785–789; https://doi.org/10.1002/zaac.19966220506.10.1002/zaac.19966220506Search in Google Scholar

61. Wickleder, M. S., Meyer, G. Z. Anorg. Allg. Chem. 1995, 621, 740–742; https://doi.org/10.1002/zaac.19956210508.10.1002/zaac.19956210508Search in Google Scholar

62. Meyer, G. Z. Anorg. Allg. Chem. 1984, 517, 191–197; https://doi.org/10.1002/zaac.19845171019.10.1002/zaac.19845171019Search in Google Scholar

63. Meyer, G., Stenzel, F. Z. Anorg. Allg. Chem. 1993, 619, 652–660; https://doi.org/10.1002/zaac.19936190812.10.1002/zaac.19936190406Search in Google Scholar

64. Meyer, G., Ax, P., Schleid, T., Irmler, M. Z. Anorg. Allg. Chem. 1987, 554, 25–33; https://doi.org/10.1002/zaac.19875541104.10.1002/zaac.19875541104Search in Google Scholar

65. Böcker, M., Gerlitzki, N., Meyer, G. Z. Kristallogr. – NCS 2001, 216, 19–19, https://doi.org/10.1524/ncrs.2001.216.14.19.10.1524/ncrs.2001.216.14.19Search in Google Scholar

66. Liao, W., Dronskowski, R. Acta Crystallogr. 2004, E 60, i72–i73; https://doi.org/10.1107/s1600536804011043.10.1107/S1600536804011043Search in Google Scholar

67. Schurz, C. M., Meyer, G., Schleid, T. Acta Crystallogr. 2011, E 67, i33–i33. https://doi.org/10.1107/S1600536811014498.10.1107/S1600536811014498Search in Google Scholar PubMed PubMed Central

68. Herrendorf, W., Bärnighausen, H., HABITUS: Program for the Optimization of the Crystal Shape for Numerical Absorption Correction; Universität Karlsruhe / Universität Gießen: Karlsruhe, Gießen (Germany), 1993/1996.Search in Google Scholar

69. Sheldrick, G. M., SHELXS-97 and SHELXL-97: Programs for the Solution and Refinement of Crystal Structures from X-Ray Diffraction Data, University of Göttingen: Göttingen (Germany) 1997.Search in Google Scholar

70. Sheldrick, G. M. Acta Crystallogr. 2008, A 64, 112–122; https://doi.org/10.1107/s0108767307043930.10.1107/S0108767307043930Search in Google Scholar PubMed


Supplementary material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0051).


Received: 2020-04-28
Accepted: 2020-07-01
Published Online: 2020-09-02
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0051/html?lang=en
Scroll to top button