Home Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex
Article
Licensed
Unlicensed Requires Authentication

Attractive halogen···halogen interactions in crystal structure of trans-dibromogold(III) complex

  • Alexander G. Tskhovrebov EMAIL logo , Alexander S. Novikov , Andreii S. Kritchenkov , Victor N. Khrustalev and Matti Haukka
Published/Copyright: July 24, 2020

Abstract

A synthesis of the trans-dibromogold(III) t-Bu-Xantphos complex and its self-assembly into infinite 1-dimensional chain in the solid state is reported. The new complex characterized using elemental analyses (C, H, N), ESI-MS, 1H and 13C NMR techniques and X-ray diffraction analysis. Results of DFT calculations followed by the topological analysis of the electron density distribution within the framework of QTAIM method at the ωB97XD/DZP-DKH level of theory reveal that strength of attractive intermolecular non-covalent interactions Br···Br in the crystal is 1.2–1.6 kcal/mol.


Corresponding author: Alexander G. Tskhovrebov, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation; and Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, E-mail:

Funding source: Ministry of Science and Higher Education of the Russian Federation

Award Identifier / Grant number: 075-03-2020-223 (FSSF-2020-0017)

Funding source: RSF

Award Identifier / Grant number: 19-73-00001

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by RFBR and BRFBR, project number 20-53-00006. ASN is grateful to RSF for the support of his theoretical studies (project No. 19-73-00001). We acknowledge the RUDN University Program 5-100. Funding for this research was provided by Ministry of Science and Higher Education of the Russian Federation (award no. 075-03-2020-223 [FSSF-2020-0017]).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Adonin, S. A., Gorokh, I. D., Samsonenko, D. G., Novikov, A. S., Korolkov, I. V., Plyusnin, P. E., Sokolov, M. N., Fedin, V. P. Binuclear and polymeric bromobismuthate complexes: crystal structures and thermal stability. Polyhedron 2019, 159, 318–322. https://doi.org/10.1016/j.poly.2018.12.017.Search in Google Scholar

2. Adonin, S. A., Bondarenko, M. A., Abramov, P. A., Novikov, A. S., Plyusnin, P. E., Sokolov, M. N., Fedin, V. P. Bromo- and polybromoantimonates(V): structural and theoretical studies of hybrid halogen-rich halometalate frameworks. Chemistry 2018, 24, 10165–10170. https://doi.org/10.1002/chem.201801338.Search in Google Scholar PubMed

3. Saha, A., Rather, S. A., Sharada, D., Saha, B. K. C-X···X-C vs C-H···X-C, which one is the more dominant interaction in crystal packing (X = Halogen)?. Cryst. Growth Des. 2018, 18, 6084–6090. https://doi.org/10.1021/acs.cgd.8b00955.Search in Google Scholar

4. Usoltsev, A. N., Adonin, S. A., Novikov, A. S., Samsonenko, D. G., Sokolov, M. N., Fedin, V. P. One-dimensional polymeric polybromotellurates(IV): structural and theoretical insights into halogen⋯halogen contacts. CrystEngComm 2017, 19, 5934–5939. https://doi.org/10.1039/c7ce01487b.Search in Google Scholar

5. Adonin, S. A., Gorokh, I. D., Novikov, A. S., Abramov, P. A., Sokolov, M. N., Fedin, V. P. Halogen contacts-induced unusual coloring in BiIII bromide complex: anion-to-cation charge transfer via Br⋅⋅⋅Br interactions. Chemistry 2017, 23, 15612–15616. https://doi.org/10.1002/chem.201703747.Search in Google Scholar PubMed

6. Nguyen, H. L., Horton, P. N., Hursthouse, M. B., Legon, A. C., Bruce, D. W. Halogen bonding: a new interaction for liquid crystal formation. J. Am. Chem. Soc. 2004, 126, 16–17. https://doi.org/10.1021/ja036994l.Search in Google Scholar PubMed

7. Metrangolo, P., Resnati, G. Chemistry: halogen versus hydrogen. Science 2008, 321, 918–919. https://doi.org/10.1126/science.1162215.Search in Google Scholar PubMed

8. Cariati, E., Cavallo, G., Forni, A., Leem, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Righetto, S., Terraneo, G., Tordin, E. Self-complementary nonlinear optical-phores targeted to halogen bond-driven self-assembly of electro-optic materials. Cryst. Growth Des. 2011, 11, 5642–5648. https://doi.org/10.1021/cg201194a.Search in Google Scholar

9. Sun, A., Lauher, J. W., Goroff, N. S. Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 2006, 312, 1030–1034. https://doi.org/10.1126/science.1124621.Search in Google Scholar PubMed

10. Yang, L., Tan, X., Wang, Z., Zhang, X. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 2015, 115, 7196–7239. https://doi.org/10.1021/cr500633b.Search in Google Scholar PubMed

11. Walsh, R. B., Padgett, C. W., Metrangolo, P., Resnati, G., Hanks, T. W., Pennington, W. T. Crystal engineering through halogen bonding: complexes of nitrogen heterocycles with organic iodides. Cryst. Growth Des. 2001, 1, 165–175. https://doi.org/10.1021/cg005540m.Search in Google Scholar

12. Saha, B. K., Rather, S. A., Saha, A. Interhalogen interactions in the light of geometrical correction. Cryst. Growth Des. 2016, 16, 3059–3062. https://doi.org/10.1021/acs.cgd.6b00338.Search in Google Scholar

13. Bui, T. T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R., Espinosa, E. The nature of halogen halogen interactions: a model derived from experimental charge-density analysis. Angew. Chem. Int. Ed. 2009, 48, 3838–3841. https://doi.org/10.1002/anie.200805739.Search in Google Scholar PubMed

14. Adonin, S. A., Udalova, L. I., Abramov, P. A., Novikov, A. S., Yushina, I. V., Korolkov, I. V., Semitut, E. Y., Derzhavskaya, T. A., Stevenson, K. J., Troshin, P. A., Sokolov, M. N., Fedin, V. P. A novel family of polyiodo-bromoantimonate(III) complexes: cation-driven self-assembly of photoconductive metal-polyhalide frameworks. Chemistry 2018, 24, 14707–14711. https://doi.org/10.1002/chem.201802100.Search in Google Scholar PubMed

15. Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A., Tskhovrebov, A. G. Lasagna-like supramolecular polymers derived from the PdII osazone complexes via C(Sp2)–H⋯Hal hydrogen bonding. Inorg. Chim. Acta 2020, 502. https://doi.org/10.1016/j.ica.2019.119378.Search in Google Scholar

16. Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V., Starova, G. L. Supramolecular polymers derived from the PtII and PdII schiff base complexes via C(Sp2)–H … Hal hydrogen bonding: combined experimental and theoretical study. J. Organomet. Chem. 2019, 886, 71–75. https://doi.org/10.1016/j.jorganchem.2019.01.023.Search in Google Scholar

17. Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N., Haukka, M. Palladium(II)-stabilized pyridine-2-diazotates: synthesis, structural characterization, and cytotoxicity studies. Inorg. Chem. 2018, 57, 930–934. https://doi.org/10.1021/acs.inorgchem.8b00072.Search in Google Scholar PubMed

18. Mikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G., Balova, I. A. Polystyrene-supported acyclic diaminocarbene palladium complexes in Sonogashira cross-coupling: stability vs. catalytic activity. Catalysts 2018, 8, 141. https://doi.org/10.3390/catal8040141.Search in Google Scholar

19. Tskhovrebov, A. G., Luzyanin, K. V., Kuznetsov, M. L., Sorokoumov, V. N., Balova, I. A., Haukka, M., Kukushkin, V. Y. Substituent R-dependent regioselectivity switch in nucleophilic addition of N-phenylbenzamidine to PdII-and PtII-complexed isonitrile RN-C giving aminocarbene-like species. Organometallics 2011, 30, 863–874. https://doi.org/10.1021/om101041g.Search in Google Scholar

20. Mikhaylov, V. N., Sorokoumov, V. N., Novikov, A. S., Melnik, M. V., Tskhovrebov, A. G., Balova, I. A. Intramolecular hydrogen bonding stabilizes trans-configuration in a mixed carbene/isocyanide PdII complexes. J. Organomet. Chem. 2020, 912, 121174. https://doi.org/10.1016/j.jorganchem.2020.121174.Search in Google Scholar

21. Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M., Kukushkin, V. Y. Synthesis and characterization of Cis-(RNC)2PtII species useful as synthons for generation of various (aminocarbene)Pt II complexes. J. Chem. Crystallogr. 2012, 42, 1170–1175. https://doi.org/10.1007/s10870-012-0371-0.Search in Google Scholar

22. Bader, R. F. W. A Quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. https://doi.org/10.1021/cr00005a013.Search in Google Scholar

23. Espinosa, E., Molins, E., Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. https://doi.org/10.1016/s0009-2614(98)00036-0.Search in Google Scholar

24. Vener, M. V., Egorova, A. N., Churakov, A. V., Tsirelson, V. G. Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem. 2012, 33, 2303–2309. https://doi.org/10.1002/jcc.23062.Search in Google Scholar PubMed

25. Bartashevich, E. V, Tsirelson, V. G. Interplay between non-covalent interactions in complexes and crystals with halogen bonds. Russ. Chem. Rev. 2014, 83, 1181–1203. https://doi.org/10.1070/rcr4440.Search in Google Scholar

26. Kuznetsov, M. L. Relationships between interaction energy and electron density properties for homo halogen bonds of the [(A)NY-X···X-Z(B)m] type (X = Cl, Br, I). Molecules 2019, 24, 2733. https://doi.org/10.3390/molecules24152733.Search in Google Scholar PubMed PubMed Central

27. Espinosa, E., Alkorta, I., Elguero, J., Molins, E. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H⋯F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. https://doi.org/10.1063/1.1501133.Search in Google Scholar

28. von Ragué Schleyer, P., Budzelaar, P. H. M., Cremer, D., Kraka, E. Puckered Structures of 1,3‐dihydro‐1,3‐diboretes and bicyclobutane‐2,4‐dione: nonplanar Hückel 2π‐electron aromatic molecules. Angew. Chem. Int. Ed. 1984, 23, 374–375. https://doi.org/10.1002/anie.198403741.Search in Google Scholar

29. Macchi, P., Sironi, A. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord. Chem. Rev. 2003, 238–239, 383–412. https://doi.org/10.1016/s0010-8545(02)00252-7.Search in Google Scholar

30. Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. https://doi.org/10.1021/ja100936w.Search in Google Scholar PubMed PubMed Central

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0045).

Received: 2020-04-20
Accepted: 2020-07-01
Published Online: 2020-07-24
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0045/html
Scroll to top button