Startseite La3Ni4Al2: a new layered aluminide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

La3Ni4Al2: a new layered aluminide

  • Nazar Zaremba , Yurij Schepilov , Galyna Nychyporuk , Viktor Hlukhyy und Volodymyr Pavlyuk EMAIL logo
Veröffentlicht/Copyright: 1. Juni 2019

Abstract

The new ternary compound La3Ni4Al2 has been synthesized and the crystal structure has been studied by X-ray single crystal diffraction. La3Ni4Al2 is the first aluminide, crystallizing in the La3Ni4Ga2-type. The crystal structure of La3Ni4Al2 consists of La-layers and hetero-atomic Ni/Al layers, sequentially alternating along the a axis (pseudo-hexagonal c axis). According to electronic structure calculations using the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation (TB-LMTO-ASA), strong Al–Ni interactions have been established. The coordination polyhedra for the Al atoms are cuboctahedra, whereas the bicapped square prism and bicapped square antiprism are typical for nickel atoms. The lanthanum atoms are enclosed in pseudo Frank–Kasper polyhedra.

Acknowledgements

Funding for this research was provided by: National Science Centre, Poland (No 2017/25/B/ST8/02179) and DAAD, Germany (Nr 91619802).

References

[1] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, ASM International®, Materials Park, Ohio, USA, 2017/2018.Suche in Google Scholar

[2] D. J. Gout, T. J. Barker, O. Gourdon, G. J. Miller, A new superstructure for the BaAl4-structure type: an experimental and theoretical study of La2NiAl7. Chem. Mater.2005, 17, 3661.10.1021/cm050513aSuche in Google Scholar

[3] G. Cordier, G. Dörsam, R. Kniep, New intermediate phases in the ternary systems rare earth-transition element-aluminium. J. Magn. Magn. Mater.1988, 76/77, 653.10.1016/0304-8853(88)90517-3Suche in Google Scholar

[4] A. Leineweber, H. Nitsche, La5Al3Ni2 – an intermetallic phase observed upon crystallization of La50Al25Ni25 metallic glass. Z. Anorg. Allg. Chem.2006, 632, 553.10.1002/zaac.200500387Suche in Google Scholar

[5] Y. P. Yarmolyuk, R. M. Rykhal’, L. G. Akselrud, O. S. Zarechnyuk, Crystal structure of the PrNi2Al5 compound and its analogs. Dopov. Akad. Nauk Ukr. RSR, Ser. A. 1981, 9, 86.Suche in Google Scholar

[6] R. E. Gladyshevskii, K. Cenzual, E. Parthé, LaNi2Al3, a ternary substitution variant of the orthorhombic BaZn5 type. Acta Crystallogr. B1992, 48, 389.10.1107/S0108768192001502Suche in Google Scholar

[7] G. Bruzzone, M. Ferretti, F. Merlo, G. L. Olcese, Structural, magnetic and hydrogenation properties of RNiAl2 ternary compounds. Lanthanide Actinide Res.1986, 1, 153.Suche in Google Scholar

[8] V. A. Romaka, Y. Grin, Y. P. Yarmolyuk, O. S. Zarechnyuk, R. V. Skolozdra, Magnetic and crystallographic parameters of R2Ni2Ga and R2Ni2Al compounds. Phys. Met. Metallogr.1982, 54, 58.Suche in Google Scholar

[9] D. Gout, E. Benbow, O. Gourdon, J. M. Gordon, Composition-structure relationships in polar intermetallics: experimental and theoretical studies of LaNi1+xAl6-x (x=0.44). Inorg. Chem. 2004, 43, 4604.10.1021/ic0497331Suche in Google Scholar PubMed

[10] K. Giza, W. Iwasieczko, V. V. Pavlyuk, H. Bala, H. Drulis, L. Adamczyk, Hydrogen absorption and corrosion resistance of LaNi4.8Al0.2 and LaNi4.8Al0.1Li0.1 alloys. J. Alloys Compd.2007, 429, 352.10.1016/j.jallcom.2006.07.041Suche in Google Scholar

[11] K. N. Semenenko, L. A. Petrova, V. V. Burnasheva, Synthesis and some properties of hydride phases based on the compounds LaNi5-xTx, where T is Al, Cr, Fe, or Cu. Russ. J. Inorg. Chem. 1983, 28, 107.Suche in Google Scholar

[12] V. V. Pavlyuk, I. M. Opaynych, O. I. Bodak, T. Palasinska, B. Rozdzynska, H. Bala, Interaction of components in the La-Ni-Zn system. Pol. J. Chem.1997, 71, 309.Suche in Google Scholar

[13] X-RED32. Version 1.48. STOE & Cie GmbH, Darmstadt, Germany, 2008.Suche in Google Scholar

[14] X-SHAPE. Version 2.11. STOE & Cie GmbH, Darmstadt, Germany, 2008.Suche in Google Scholar

[15] G. M. Sheldrick, SHELXS-2014. Program for the Determination of Crystal Structure, University of Göttingen, Göttingen, Germany, 2014.Suche in Google Scholar

[16] G. M. Sheldrick, SHELXL2014/7. Program for crystal structure refinement. University of Göttingen, Germany, 2014.Suche in Google Scholar

[17] Y. N. Grin, Y. P. Yarmolyuk, The crystal structure of the compounds La3Ga2Ni4 and Pr3Ga2Ni4. Sov. Phys. Crystallogr.1980, 25, 353.Suche in Google Scholar

[18] P. K. Starodub, I. R. Mokra, O. I. Bodak, V. K. Pecharskii, V. A. Bruskov, Crystal structure of a new ternary germanide Tb3Co2Ge4. Sov. Phys. Crystallogr.1986, 31, 231.Suche in Google Scholar

[19] W. Hofmann, W. Jäniche, Der Strukturtyp von Aluminiumborid (AlB2). Naturwissenschaften1935, 23, 851.10.1007/BF01491990Suche in Google Scholar

[20] H. Barnighausen, Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH Commun. Math. Comput. Chem.1980, 9, 139.Suche in Google Scholar

[21] R.-D. Hoffmann, R. Pöttgen, AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations. Z. Kristallogr.2001, 216, 127.10.1524/zkri.216.3.127.20327Suche in Google Scholar

[22] Y. N. Grin, A. O. Fedorchuk, Effect of phase crystal structure on the construction of (Y, Sm)-Li-Ga phase diagrams. Russ. Metall. (Engl. Transl.)1992, 5, 197.Suche in Google Scholar

[23] G. E. Cranton, R. D. Heyding, The gold/selenium system and some gold seleno-tellurides. Can. J. Chem. 1968, 46, 2637.10.1139/v68-433Suche in Google Scholar

[24] O. K. Andersen, Linear methods in band theory. Phys. Rev. B1975, 12, 3060.10.1007/978-1-4613-2405-8_2Suche in Google Scholar

[25] O. K. Andersen, O. Jepsen, Explicit, first-principles tight-binding theory. Phys. Rev. Lett.1984, 53, 2571.10.1103/PhysRevLett.53.2571Suche in Google Scholar

[26] O. K. Andersen, O. Jepsen, D. Glötzel, in Highlights of Condensed Matter Theory, (Eds. F. Bassani, F. Fumi, and M. P. Tosi), North-Holland, New York, 1985.Suche in Google Scholar

[27] O. K. Andersen, Z. Pawlowska, O. Jepsen, Illustration of the linear-muffin-tin-orbital tight-binding representation: compact orbitals and charge density in Si. Phys. Rev. B1986, 34, 5253.10.1103/PhysRevB.34.5253Suche in Google Scholar

[28] U. von Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case. J. Phys. C1972, 5, 1629.10.1088/0022-3719/5/13/012Suche in Google Scholar

Received: 2019-02-27
Accepted: 2019-05-15
Published Online: 2019-06-01
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0011/html
Button zum nach oben scrollen