Abstract
Synthesis of C-2 N-substituted anthranilamide derivatives was carried out in a straight forward manner, utilizing 2-aminobenzamide and benzyl chloride as starting materials. Their crystal structures have been established by single crystal X-ray crystallographic method. In the molecules of 2-benzylamino-benzamide (3a), intramolecular hydrogen bonding b/w O atom and proton of –NH and classical intermolecular hydrogen bonding of the type N–H · · · O forming eight membered rings in R42(8) pattern. In both molecules of 2-(dibenzylamino)benzamide (3b), unlike the molecule in 3a, each H atoms is pointed towards N atom causing intramolecular hydrogen bonding interactions, resulting in S(6) motifs. However, it is interesting to note that both molecules in 3b are lying about inversion centres and form dimers in R42(8) motifs; the two dimers are linked via non-classical intermolecular hydrogen bonds C–H · · · O resulting in clusters of four molecules in the structure. In vitro assay results revealed that molecule 3b with IC50 values of 3.8 ± 0.08 μM (AChE) and 17.6 ± 1.10 μM (BChE) possessed better cholinesterase (AChE and BChE) inhibition potential as compared to standard drug galantamine. Preliminary in silico studies showed that more biological active derivatives were also having good pharmacokinetic profile with no AMES toxicity and carcinogenicity.
Acknowledgments
The authors (MS, NS and MIT) are grateful to the Higher Education Commission, Pakistan and University of Sargodha, Sargodha for financial assistance.
References
[1] M. Shariat, S. Abdollahi, Molecules2004, 9, 705.10.3390/90800705Search in Google Scholar
[2] Y. J. Chung, Y. S. Jung, C. M. Seong, N. S. Park, Bull. Kor. Chem. Soc.1998, 19, 1117.Search in Google Scholar
[3] B. S. Reddy, A. Venkateswarlu, C. Madan, A. Vinu, Tetrahedron Lett. 2011, 52, 1891.10.1016/j.tetlet.2011.02.030Search in Google Scholar
[4] M. Sarfraz, N. Sultana, U. Rashid, M. S. Akram, A. Sadiq, M. I. Tariq, Bioorg. Chem.2017, 70, 237.10.1016/j.bioorg.2017.01.004Search in Google Scholar
[5] P. Tyagi, S. Chandra, B. Saraswat, D. Sharma, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 143, 1.10.1016/j.saa.2015.02.027Search in Google Scholar
[6] Y. F. Xiang, C. W. Qian, G. W. Xing, J. Hao, M. Xia, Y. F. Wang, Bioorg. Med. Chem. Lett.2012, 22, 4703.10.1016/j.bmcl.2012.05.079Search in Google Scholar
[7] Y. N. Mabkhot, A. M. Al-Majid, A. Barakat, S. S. Al-Showiman, M. S. Al-Har, S. Radi, M. M. Naseer, T. B. Hadda, Int. J. Mol. Sci.2014, 15, 5115.10.3390/ijms15035115Search in Google Scholar
[8] T. Nishimura, T. Iino, M. Mitsuya, M. Bamba, H. Watanabe, D. Tsukahara, K. Kamata, K. Sasaki, S. Ohyama, H. Hosaka, Bioorg. Med. Chem. Lett. 2009, 19, 1357.10.1016/j.bmcl.2009.01.053Search in Google Scholar
[9] E. A. Şener, K. K. Bingöl, I. Ören, O. T. Arpacı, I. Yalçın, N. Altanlar, Il Farmaco2000, 55, 469.10.1016/S0014-827X(00)00070-7Search in Google Scholar
[10] Y. Nagaoka, T. Maeda, Y. Kawai, D. Nakashima, T. Oikawa, K. Shimoke, T. Ikeuchi, H. Kuwajima, S. Uesato, Eur. J. Med. Chem.2006, 41, 697.10.1016/j.ejmech.2006.02.002Search in Google Scholar PubMed
[11] N. M. A. Gawad, H. H. Georgey, R. M. Youssef, N. A. El Sayed, Med. Chem. Res.2011, 20, 1280.10.1007/s00044-010-9465-4Search in Google Scholar
[12] P. M. Chandrika, T. Yakaiah, A. R. R. Rao, B. Narsaiah, N. C. Reddy, V. Sridhar, J. V. Rao, Eur. J. Med. Chem.2008, 43, 846.10.1016/j.ejmech.2007.06.010Search in Google Scholar PubMed
[13] E. Cohen, B. Klarberg, J. R. Vaughan Jr, J. Am. Chem. Soc.1960, 82, 2731.10.1021/ja01496a020Search in Google Scholar
[14] H. Kikuchi, K. Yamamoto, S. Horoiwa, S. Hirai, R. Kasahara, N. Hariguchi, Y. Oshima, J. Med. Chem.2006, 49, 4698.10.1021/jm0601809Search in Google Scholar PubMed
[15] A. M. E. Mohsen, S. Omar, A. S. El-Din, M. L. Ibrahim, A. A. El-Tombary, Alex. J. Pharm. Sci.1991, 5, 213.Search in Google Scholar
[16] D. J. Connolly, D. Cusack, T. P. O’Sullivan, P. J. Guiry, Tetrahedron2005, 61, 10153.10.1016/j.tet.2005.07.010Search in Google Scholar
[17] S. B. Mhaske, N. P. Argade, Tetrahedron2006, 62, 9787.10.1016/j.tet.2006.07.098Search in Google Scholar
[18] N. Sultana, M. Sarfraz, S. T. Tanoli, M. S. Akram, A. Sadiq, U. Rashid, M. I. Tariq, Bioorg. Chem.2017, 72, 256.10.1016/j.bioorg.2017.04.009Search in Google Scholar PubMed
[19] N. Kanışkan, S. Kökten, I. Çelik, ARKIVOC.2012, 8, 198.10.3998/ark.5550190.0013.818Search in Google Scholar
[20] D. Zhao, T. Wang, J.-X. Li, Chem. Commun. 2014, 50, 6471.10.1039/C4CC02648ASearch in Google Scholar PubMed
[21] M. Sarfraz, N. Sultana, M. Jamil, M. I. Tariq, Revue Roum. Chim.2018, 63, 227.Search in Google Scholar
[22] J. Bernstein, M. C. Etter, L. Leiserowitz, Structure Correlation, Vol. 2 (Eds. H.-B. Bürgi and J. D. Dunitz) VCH, New York, p. 431, 1994.10.1002/9783527616091.ch11Search in Google Scholar
[23] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, Taylor, R. Structure Correlation, Vol. 2 (Eds. H.-B. Bürgi and J. D. Dunitz) VCH, New York, p. 751, 1994.Search in Google Scholar
[24] F. H. Allen, Acta Crystallogr.2002, B58, 380.10.1107/S0108768102003890Search in Google Scholar PubMed
[25] L.-X. Wang, B.-Q. Hu, J.-F. Xiang, J. Cui, X. Hao, T.-L. Liang, Y.-L. Tang, Tetrahedron2014, 70, 8588.10.1016/j.tet.2014.09.057Search in Google Scholar
[26] Bruker. (APEXII, SAINT & SADABS), Bruker Axs Inc., Madison, 2004.Search in Google Scholar
[27] A. Altomare, M. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Crystallogr.1993, 26, 343.10.1107/S0021889892010331Search in Google Scholar
[28] G. M. Sheldrick, (SHELXL-97). Acta Crystallogr.2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar
[29] L. J. Farrugia, (ORTEP-3 for Windows). J. Appl. Crystallogr.1997, 30, 565.10.1107/S0021889897003117Search in Google Scholar
[30] G. L. Ellman, K. D. Courtney, V. Andres Jr., R. M. Feather-Stone, Biochem. Pharmacol.1961, 7, 88.10.1016/0006-2952(61)90145-9Search in Google Scholar
[31] F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P. W. Lee, Y. Tang, Chem. Inf. Model.2012, 52, 3099.10.1021/ci300367aSearch in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate crystal
- Synthesis and crystal structure of a series of stoichiometric (n)-ITB molybdenum-bronze oxides containing trivalent arsenic
- La3Ni4Al2: a new layered aluminide
- Annealing of metamict gadolinite-(Y): X-ray diffraction, Raman, IR, and Mössbauer spectroscopy
- Explanation of structural differences and similarities between the AT2Al10 phases (where A=actinide, lanthanide or rare earth element and T=transition metal)
- Organic and Metalorganic Crystal Structures
- Synthesis, molecular packing and anti-cholinesterase activity of some new C-2 N-substituted anthranilamide derivatives
- O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate: structural evidence of the decomposition product and its oxalate salt
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Effect of shock waves on structural and dielectric properties of ammonium dihydrogen phosphate crystal
- Synthesis and crystal structure of a series of stoichiometric (n)-ITB molybdenum-bronze oxides containing trivalent arsenic
- La3Ni4Al2: a new layered aluminide
- Annealing of metamict gadolinite-(Y): X-ray diffraction, Raman, IR, and Mössbauer spectroscopy
- Explanation of structural differences and similarities between the AT2Al10 phases (where A=actinide, lanthanide or rare earth element and T=transition metal)
- Organic and Metalorganic Crystal Structures
- Synthesis, molecular packing and anti-cholinesterase activity of some new C-2 N-substituted anthranilamide derivatives
- O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate: structural evidence of the decomposition product and its oxalate salt