Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures
-
Makoto Tokuda
, Akira Yoshiasa
, Tsutomu Mashimo , Hiroshi Arima , Hidetomo Hongu , Tsubasa Tobase , Akihiko Nakatsuka and Kazumasa Sugiyama
Abstract
The stability of hauerite (MnS2) as compared to that of pyrite (FeS2) can be explained by the long Mn–S distance and departure from the typical pyrite-type structures. The structural differences of MnX2 compounds (X=S, Se, and Te) are the result of spin configurations that are different than those of other MX2 compounds; however, the arrangement of d-electrons and the size of the ions in MnX2 compounds do not clearly explain why Mn2+ in MnX2 does not exist as a low spin state. To investigate the structural differences of MnX2 compounds, we synthesized single-crystal MnTe2 and MnSe2 and performed single-crsytal X-ray diffraction experiments. The single-crystal X-ray diffraction experiments were conducted on MnTe2 [a=6.9513(1) Å, u-parameter=0.38554(2), space group Pa3̅, Z=4], MnSe2 [a=6.4275(2) Å, u-parameter=0.39358(2)], MnS2 [hauerite; a=6.1013(1) Å, u-parameter=0.40105(4), obtained from Osorezan, Aomori, Japan], and FeS2 [pyrite; a=5.4190(1) Å, u-parameter 0.38484(5), obtained from Kawarakoba, Nagasaki, Japan]. The X-ray intensity datasets of these compounds do not show any evidence of symmetry reduction. In MnS2, the S–S distance is 2.0915(8) Å, which is significantly shorter than that of FeS2 (2.1618(9) Å), and the mean square displacement of S (U11=0.00915(9) Å2) is smaller than that of Mn (U11=0.01137(9) Å2). The thermal vibration characteristics of MnX2 compounds are significantly different than those of FeS2. Based on structural refinement data, we discuss the low spin state of MnX2 compounds and the structural stability of pyrite-type structures.
Acknowledgments
The samples were provided kindly by Prof. Tadao Nishiyama, Mr. Mutsuo Haino, Mr. Toshiyuki Hirama, and Mr. Shinji Inoue. This study was performed under the guidance of the Photon Factory (PAC No.2015G505 and 2015G506).
References
[1] L. Pauling, M. L. Huggins, Covalent radii of atoms and interatomic distances in crystals containing electron-pair bonds. Z. Kristallogr.1934, 87, 205.10.1524/zkri.1934.87.1.205Search in Google Scholar
[2] N. Elliott, Interatomic distances in FeS2, CoS2, and NiS2. J. Chem. Phys.1960, 33, 903.10.1063/1.1731285Search in Google Scholar
[3] N. Elliot, The crystal structure of manganese diselenide and manganese ditelluride. J. Am. Chem. Soc.1937, 59, 1958.10.1021/ja01289a049Search in Google Scholar
[4] J. M. Hastings, N. Elliot, L. M. Corliss, Antiferromagnetic structures of MnS2, MnSe2 and MnTe2. Phys. Rev.1959, 115, 13.10.1103/PhysRev.115.13Search in Google Scholar
[5] T. Chattopadhyay, H. G. von Schnering, R. F. D. Standfield, G. J. McIntyre, X-ray and neutron diffraction study of the crystal structure of MnS2. Z. Kristallogr.1992, 199, 13.10.1524/zkri.1992.199.1-2.13Search in Google Scholar
[6] P. P. Ewald, W. Friedrich, Rdntgenaufnahmen von kubischen Kristallen, insbesondere Pyrit. Annalen der Physik1914, 44, 1183.10.1002/andp.19143491605Search in Google Scholar
[7] F. Offner, A redetermination of the parameter for heurite. Z. Kristallogr.1934, 89, 182.10.1524/zkri.1934.89.1.182Search in Google Scholar
[8] D. D. Klemm, Investigations on solid solution formation in the ternary FeS2-CoS2-NiS2 and its relation to the constitution of natural bravoite. Neues Jahrb. Mineral. Abhandl.1962, 97, 337.Search in Google Scholar
[9] F. G. Smith, Variation in the properties of pyrite. Am. Mineral.1942, 27, 1.Search in Google Scholar
[10] J. C. W. Folmer, F. Jellinek, The electronic structure of pyrite, particularly CuS2 and Fe1−xCuxSe2: an XPS and Mössbauer study. J. Solid State Chem.1988, 72, 137.10.1016/0022-4596(88)90017-5Search in Google Scholar
[11] G. M. Sheldrick, SHELXT –intergrated space-group and crystal structure determination. Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar
[12] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr.2011, 44, 1272.10.1107/S0021889811038970Search in Google Scholar
[13] P. Bayliss, Crystal structure refinement of a weakly anisotropic pyrite. Am. Mineral.1977, 62, 1168.Search in Google Scholar
[14] B. T. M. Willis, A. W. Pryor, Thermal Vibrations in Crystallography. Cambridge University Press, London, 1975.Search in Google Scholar
[15] A. Yoshiasa, K. Koto, F. Kanamaru, S. Emura, H. Horiuchi, Anharmonic thermal vibrations in wurtzite-type AgI. Crystallogr. B1987, B43, 434.10.1107/S0108768187097532Search in Google Scholar
[16] A. Yoshiasa, T. Nakatani, A. Nakastuka, M. Okube, K. Sugiyama, T. Mashimo, High-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type PbTiO3 phases. Acta Crystallogr.2016, B72, 381.10.1107/S2052520616005114Search in Google Scholar
[17] Y. Xu, W. Li, C. Wang, Z. Chen, Y. Wu, X. Zhang, J. Li, S. Lin, Y. Chen, Y. Pei, MnTe2 as a novel promising thermoelectric material. J. Mater.2018, 4, 215.10.1016/j.jmat.2018.04.001Search in Google Scholar
[18] I. G. Wood, K. S. Knight, G. D. Price, J. A. Stuart, Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffraction. J. Appl. Crystallogr.2002, 35, 291.10.1107/S0021889802002273Search in Google Scholar
[19] M. Christensen, N. Lock, J. Overgaard, B. B. Iversen, Crystal structures of thermoelectric n- and p-type Ba8Ga16Ge30 studied by single crystal, multitemperature, neutron diffraction, conventional X-ray diffraction and resonant synchrotron X-ray diffraction. J. Am. Chem. Soc.2006, 128, 15657.10.1021/ja063695ySearch in Google Scholar
[20] A. Nakatsuka, M. Shimokawa, N. Nakayama, O. Ohtaka, H. Arima, M. Okube, A. Yoshiasa, Static disorders of atoms and experimental determination of Debye temperature in pyrope: low- and high-temperature single-crystal X-ray diffraction study. Am. Mineral.2011, 96, 1593.10.2138/am.2011.3714Search in Google Scholar
[21] A. Yoshiasa, T. Ito, K. Sugiyama, A. Nakatsuka, M. Okube, M. Kurosawa, T. Katsura, A peculiar site preference of boron in MgAl2−xBxO4 (x=0.0, 0.11, and 0.13) spinel under high-pressure and high-temperature. Z. Anorg. Allg. Chem.2010, 636, 472.10.1002/zaac.200900418Search in Google Scholar
[22] S. Ogawa, Specific heat study of magnetic ordering and band structure of 3d transition metal disulfides having the pyrite structure. J. Phys. Soc. Jpn.1976, 41, 462.10.1143/JPSJ.41.462Search in Google Scholar
[23] C. Kittel, Introduction to Solid State Physics, 5th ed., Wiley, New York, p. 126, 1976.Search in Google Scholar
[24] S. Furuseth, K. Selte, A. Kjekshus, Redetermined crystal structures of PdAs2, PdSb2, PtP2, PtAs2, PtSb2, α-PtBi2, and AuSb2. Acta Chem. Scand.1965, 19, 735.10.3891/acta.chem.scand.19-0735Search in Google Scholar
[25] Sutarno, O. Knop, K. I. G. Reid, Chalcogenides of the transition elements. V. Crystal structures of the disulfides and ditellurides of ruthenium and osmium. Can. J. Chem.1966, 45, 1391.10.1139/v67-230Search in Google Scholar
[26] W. N. Stassen, R. D. Heyding, Crystal structures of RuSe2, OsSe2, PtAs2, and α-NiAs2. Can. J. Chem.1968, 46, 2159.10.1139/v68-351Search in Google Scholar
[27] P. C. Donohue, W. J. Siemons, J. L. Gillson, Preparation and properties of pyrite-type SiP2 and SiAs2. J. Phys. Chem. Solids1968, 295, 807.10.1016/0022-3697(68)90142-XSearch in Google Scholar
[28] S. A. J. Kimber, A. J. Simon, A. Salamat, S. R. Evans, H. O. Jeschke, K. Muthukumar, M. Tomić, F. Salvat-Pujol, R. Valenti, M. V. Kaisheva, I. Zizak, T. Chatterji, Giant pressure-induced volume collapse in the pyrite mineral MnS2. Proc. Natl. Acad. Sci. USA2014, 111, 5106.10.1073/pnas.1318543111Search in Google Scholar
[29] S. Jinnouchi, A. Yoshiasa, K. Sugiyama, R. Shimura, H. Arima, K. Momma, R. Miyawaki, Crystal structure refinements of legrandite, adamite, and paradamite: the complex structure and characteristic hydrogen bonding network of legrandite. J. Mineral. Petrol. Sci.2016, 111, 35.10.2465/jmps.141216Search in Google Scholar
[30] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr.1976, A32, 751.10.1107/S0567739476001551Search in Google Scholar
[31] T. Chattopadhyay, H. G. Schnering, High pressure X-ray diffraction study on p-FeS2, m-FeS2 and MnS2 to 340 kbar: a possible high spin-low spin transition in MnS2. J. Phys. Chem. Solids.1985, 46, 113.10.1016/0022-3697(85)90204-5Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2134).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Preparation, structural and spectroscopical properties of silver terbium diphosphate AgTbP2O7
- Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures
- The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3
- Mg[(UO2)2(Ge2O6(OH)2]·(H2O)4.4, a novel compound with mixed germanium coordination: cation disordering and topological features of β-U3O8 type sheets
- Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals
- Organic and Metalorganic Crystal Structures
- Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
- Crystallographic Computing
- HKLF5Tools: a program for processing diffraction data of non-merohedrally twinned crystals
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Preparation, structural and spectroscopical properties of silver terbium diphosphate AgTbP2O7
- Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures
- The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3
- Mg[(UO2)2(Ge2O6(OH)2]·(H2O)4.4, a novel compound with mixed germanium coordination: cation disordering and topological features of β-U3O8 type sheets
- Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals
- Organic and Metalorganic Crystal Structures
- Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
- Crystallographic Computing
- HKLF5Tools: a program for processing diffraction data of non-merohedrally twinned crystals