Home Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals
Article
Licensed
Unlicensed Requires Authentication

Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals

  • Jianhan He EMAIL logo and Ulrich Bismayer
Published/Copyright: March 21, 2019

Abstract

The identification of the texture of biominerals and the particle orientation in the bivalve shells of Anodonta cygnea was performed using polarized Raman spectroscopy mapping measurements. A single crystal of aragonite served as a reference to disclose orientational information on the mesoscopic scale. The relative intensities of different Raman modes combined with the determination of depolarization ratio of the Ag Raman mode at 1087 cm−1 of an aragonite single crystal was used to indicate the angular variation of aragonite crystallites in biominerals. The imaging technique shows that the a- and b-axis of aragonite crystallites in both, nacreous and prismatic layers do not only have one orientation but they are organized in a domain-type arrangement. The angular divergence in the prismatic layer of the shells is larger and hence, the crystallites in the nacreous layer have a higher degree of co-orientation. Results provide relevant textural information about aragonitic shells and indicate a sensitive technique to evaluate the crystal orientation in biominerals.

Acknowledgments

We acknowledge financial support from the China Scholarship Council as well as the instruction and opinions from Prof. B. Mihailova and Dr. P. Zietlow from the Mineralogisch-Petrographisches Institut, Universität Hamburg.

References

[1] F. Barthelat, H. D. Espinosa, An experimental investigation of deformation and fracture of nacre–mother of pearl. Exp. Mech.2007, 47, 311.10.1007/s11340-007-9040-1Search in Google Scholar

[2] H. Kakisawa, T. Sumitomo, The toughening mechanism of nacre and structural materials inspired by nacre. Sci. Technol. Adv. Mater. 2012, 12, 64710.10.1088/1468-6996/12/6/064710Search in Google Scholar

[3] M. A. Crenshaw, The soluble matrix from Mercenaria mercenaria shell. Biomineralization1972, 6, 6.Search in Google Scholar

[4] H. Liao, H. Mutvei, M. Sjöström, L. Hammarström, J. Li, Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials2000, 21, 457.10.1016/S0142-9612(99)00184-2Search in Google Scholar

[5] S. Suzuki, S. Uozumi, Organic components of prismatic layers in molluscan shells. J. Fac. Sci. Hokkaido Univ. Seri. 41981, 20, 7.Search in Google Scholar

[6] A. G. Checa, F. J. Esteban-Delgado, A. B. Rodríguez-Navarro, Crystallographic structure of the foliated calcite of bivalves. J. Struct. Biol. 2007, 157, 393.10.1016/j.jsb.2006.09.005Search in Google Scholar

[7] Q. L. Feng, H. B. Li, F. Z. Cui, H. D. Li, T. N. Kim, Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell. J. Mater. Sci. Lett. 1999, 18, 1547.10.1023/A:1006687627323Search in Google Scholar

[8] J. He, S. Zhao, Z. Wei, U. Bismayer, Mesoscale twinning in shells of Pinctada martensii. Z. Kristallogr. Cryst. Mater.2016, 231, 673.10.1515/zkri-2016-1989Search in Google Scholar

[9] K. S. Krishnan, The Raman effect in crystals. Nature1928, 122, 477.10.1038/122477a0Search in Google Scholar

[10] P. Pringsheim, Der Ramaneffekt, ein neuer von C.V. Raman entdeckter Strahlungseffekt. Naturwissenschaften1928, 16, 597.10.1007/BF01494083Search in Google Scholar

[11] J. Unvros, S. Sharma, F. Mackenzie, Characterization of some biogenic carbonates with Raman spectroscopy. Am. Mineral1991, 76, 641.Search in Google Scholar

[12] J. Urmos, F. T. Mackenzie, S. K. Sharma, Characterization of biominerals with Raman spectroscopy. Trans. Amer. Geophys. Union1986, 67, 1271.Search in Google Scholar

[13] N. Gierlinger, L. Sapei, O. Paris, Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta2008, 227, 969.10.1007/s00425-007-0671-3Search in Google Scholar

[14] J. C. Weaver, Q. Wang, A. Miserez, A. Tantuccio, R. Stromberg, K. N. Bozhilov, P. Maxwell, R. Nay, S. T. Heier, E. DiMasi, Analysis of an ultra-hard magnetic biomineral in chiton radular teeth. Mater. Today2010, 13, 42.10.1016/S1369-7021(10)70016-XSearch in Google Scholar

[15] G. Nehrke, H. Poigner, D. Wilhelms Dick, T. Brey, D. Abele, Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosy.2012, 13, 1.10.1029/2011GC003996Search in Google Scholar

[16] G. Nehrke, J. Nouet, Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina). Biogeosciences2011, 8, 3761.10.5194/bg-8-3761-2011Search in Google Scholar

[17] C. Carteret, M. De La Pierre, M. Dossot, F. Pascale, A. Erba, R. Dovesi, The vibrational spectrum of CaCO3 aragonite: a combined experimental and quantum-mechanical investigation. J. Chem. Phys.2013, 138, 14201.10.1063/1.4772960Search in Google Scholar PubMed

[18] M. De La Pierre, C. Carteret, L. Maschio, E. André, R. Orlando, R. Dovesi, The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. J. Chem. Phys.2014, 140, 164509.10.1063/1.4871900Search in Google Scholar PubMed

[19] R. Lu, Crystallographic Orientation of Biogenic Aragonite in Pearls, 2009.Search in Google Scholar

[20] M. C. Munisso, W. Zhu, G. Pezzotti, Raman tensor analysis of sapphire single crystal and its application to define crystallographic orientation in polycrystalline alumina. Phys. Status Solidi B2009, 246, 1893.10.1002/pssb.200945137Search in Google Scholar

[21] Y. Yang, Y. L. Liu, L. Y. Zhang, K. Zhu, S. Y. Ma, G. G. Siu, Z. K. Xu, H. S. Luo, Polarized Raman mapping study of the microheterogeneity in 0.67 PbMg1/3 Nb2/3O3-0.33 PbTiO3 single crystal. J. Raman Spectrosc.2010, 41, 1735.10.1002/jrs.2600Search in Google Scholar

[22] Y. Zhang, Y. Gong, B. Qiao, Application of polarized Raman spectroscopy in the research on molecule conformation. Spectrosc. Spect. Anal.2013, 33, 1810.Search in Google Scholar

[23] L. Xie, X. Wang, J. Li, The SEM and TEM study on the laminated structure of individual aragonitic nacre tablet in freshwater bivalve H. cumingii Lea shell. J. Struct. Biol.2010, 169, 89.10.1016/j.jsb.2009.09.002Search in Google Scholar PubMed

[24] C. Capillas, E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, H. T. Stokes, D. Hatch, SYMMODES: a software package for group-theoretical analysis of structural phase transitions. J. Appl. Crystallogr.2003, 36, 953.10.1107/S0021889803003212Search in Google Scholar

[25] J. He, S. Zhao, M. Yang, Preferred orientation of aragonite in nacre of Pinctada martensii shell determined by electron backscatter diffraction. Chinese J. Inorg. Chem. 2014, 30, 2252.Search in Google Scholar

[26] A. G. Checa, J. T. Bonarski, M. G. Willinger, M. Faryna, K. Berent, B. Kania, A. González-Segura, C. M. Pina, J. Pospiech, A. Morawiec, Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite. J. R. Soc. Interface2013, 10, 20130425.10.1098/rsif.2013.0425Search in Google Scholar PubMed PubMed Central

[27] A. G. Checa, C. M. Pina, A. J. Osuna-Mascaró, A. B. Rodríguez-Navarro, E. M. Harper, Crystalline organization of the fibrous prismatic calcitic layer of the Mediterranean mussel Mytilus galloprovincialis. Eur. J. Mineral.2014, 26, 495.10.1127/0935-1221/2014/0026-2374Search in Google Scholar

[28] P. Dalbeck, J. England, M. Cusack, A. E. Fallick, Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells. Eur. J. Mineral.2006, 18, 601.10.1127/0935-1221/2006/0018-0601Search in Google Scholar

[29] E. M. Harper, A. Checa, Physiological versus Biological Control in Bivalve Calcite Prisms: comparison of Euheterodonts and Pteriomorphs. Biol. Bull. 2017, 232, 19.10.1086/691382Search in Google Scholar PubMed

[30] F. Nudelman, H. H. Chen, H. A. Goldberg, S. Weiner, L. Addadi, Spiers Memorial Lecture Lessons from biomineralization: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday Discuss.2007, 136, 9.10.1039/b704418fSearch in Google Scholar PubMed

[31] I. C. Olson, R. A. Metzler, N. Tamura, M. Kunz, C. E. Killian, P. U. Gilbert, Crystal lattice tilting in prismatic calcite. J. Struct. Biol.2013, 183, 180.10.1016/j.jsb.2013.06.006Search in Google Scholar PubMed

[32] A. Freer, D. Greenwood, P. Chung, C. L. Pannell, M. Cusack, Aragonite prism − nacre interface in freshwater mussels Anodonta anatina (Linnaeus, 1758) and Anodonta cygnea (L. 1758). Cryst. Growth Des.2009, 10, 344.10.1021/cg901265xSearch in Google Scholar

[33] A. G. Checa, A. Rodríguez-Navarro, Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca). Proc. R Soc. Lond. B Biol. Sci.2001, 268, 771.10.1098/rspb.2000.1415Search in Google Scholar PubMed PubMed Central

Received: 2019-01-24
Accepted: 2019-03-01
Published Online: 2019-03-21
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0004/html
Scroll to top button