Home Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
Article
Licensed
Unlicensed Requires Authentication

Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach

  • Atekeh Tarahhomi EMAIL logo , Arie van der Lee and Dan G. Dumitrescu
Published/Copyright: May 9, 2019

Abstract

Two new phosphoric triamides having a common part XP(O)[NHCH(CH3)2]2, with X =[2,3,6-F3–C6H2C(O)NH] (1) and [C6H11(CH3)N] (2), were prepared and characterized by spectroscopic techniques (FT-IR and 1H-, 13C-, 31P-NMR) and single crystal X-ray diffraction. The asymmetric unit of 1 is composed of one molecule, whereas for 2 it consists of six symmetry independent molecules. In all molecules, the P atoms are in a distorted tetrahedral environment of one oxygen and three nitrogen atoms. The latter have mainly sp2 character and a nearly planar environment. The crystal structures are stabilized via N–H · · · O hydrogen bond interactions, forming a linear arrangement for 1 and three independent parallel linear chains for 2, along the b and a axis, respectively. The intermolecular interactions in the molecular packing were analyzed using the Hirshfeld surface methodology, two-dimensional (2D) fingerprint plots and enrichment ratios (E). The prevalent interactions revealed by Hirshfeld surfaces are O · · · H type interactions for both structures 1 and 2, additionally C · · · O for 1 and H · · · H interactions for 2. The most favored contacts responsible for the molecular packing are C · · · F, N · · · H and O · · · H for 1 confirmed by E values greater than 1.30, whereas for 2, O · · · H and N · · · H intermolecular interactions with E values about 1.04 representing the favored contacts. Thus, the N–H · · · O hydrogen bond interactions are the dominant interactions in both compounds. For more details, a topological AIM analysis of N–H · · · O hydrogen bond interactions was performed: NCP–H · · · O=C hydrogen bond (the NCP is referred to the nitrogen atom within the C(O)NHP(O) segment) interactions in 1 are stronger than N–H · · · O=P interactions in both 1 and 2. Furthermore, a 3D topology of the molecular packing via the energy framework approach showed that the N–H · · · O hydrogen bond interactions in C(O)NHP(O)-based phosphoric triamide are predominantly electrostatic based, while they are electrostatic-dispersion based for other phosphoric triamides with a [N]P(O)[NH]2 skeleton.

Acknowledgements

Support of this investigation by Semnan University is gratefully acknowledged.

References

[1] L. Maschio, B. Civalleri, P. Ugliengo, A. Gavezzotti, Intermolecular interaction energies in molecular crystals: comparison and agreement of localized Møller–Plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J. Phys. Chem. A2011, 115, 11179.10.1021/jp203132kSearch in Google Scholar

[2] A. Gavezzotti, Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. electrostatic and polarization energies in molecular crystals. J. Phys. Chem. B2002, 106, 4145.10.1021/jp0144202Search in Google Scholar

[3] J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. Eur. J.1998, 4, 2136.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar

[4] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm2009, 11, 19.10.1039/B818330ASearch in Google Scholar

[5] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.1993, 98, 5648.10.1063/1.464913Search in Google Scholar

[6] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B1988, 37, 785.10.1103/PhysRevB.37.785Search in Google Scholar

[7] R. F. W. Bader, Atoms in Molecules. A Quantum Theory. Oxford University Press, New York, USA, 1990.10.1002/0470845015.caa012Search in Google Scholar

[8] R. F. W. Bader, The quantum mechanical basis of conceptual chemistry. Monatsh. Chem.2005, 136, 819.10.1007/s00706-005-0307-xSearch in Google Scholar

[9] A. Gavezzotti, Calculation of lattice energies of organic crystals: the PIXEL integration method in comparison with more traditional methods. Z. Kristallogr.2005, 220, 499.10.1524/zkri.220.5.499.65063Search in Google Scholar

[10] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. Spackman, CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ2017, 4, 575.10.1107/S205225251700848XSearch in Google Scholar

[11] M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun.2015, 51, 3735.10.1039/C4CC09074HSearch in Google Scholar PubMed

[12] W. Zhang, W. Fan, Z. Zhou, J. C. Garrison, Synthesis and evaluation of radiolabeled phosphoramide mustard with selectivity for hypoxic cancer cells. ACS Med. Chem. Lett.2017, 8, 1269.10.1021/acsmedchemlett.7b00355Search in Google Scholar PubMed PubMed Central

[13] T. Miyamoto, T. Kasagami, M. Asai, I. Yamamoto, A novel bioactivation mechanism of phosphoramidate insecticides. Pestic. Biochem. Phys.1999, 63, 151.10.1006/pest.1999.2399Search in Google Scholar

[14] M. Neisius, S. Liang, H. Mispreuve, S. Gaan, Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res.2013, 52, 9752.10.1021/ie400914uSearch in Google Scholar

[15] M. Keikha, M. Pourayoubi, A. Tarahhomi, A. van der Lee, Syntheses and structures of four new mixed-amide phosphoric triamides. Acta Crystallogr. C2016, 72, 251.10.1107/S2053229616001595Search in Google Scholar PubMed

[16] A. Saneei, M. Pourayoubi, T. A. Jenny, A. Crochet, K. M. Fromm, E. S. Shchegravina, Different molecular assemblies in two new phosphoric triamides with the same C(O)NHP(O)(NH)2 skeleton: crystallographic study and Hirshfeld surface analysis. Chem. Pap.2017, 71, 1809.10.1007/s11696-017-0168-xSearch in Google Scholar

[17] A. Tarahhomi, A. Van der Lee, Synthesis and crystal structures of new phosphoric triamides: study of intermolecular interactions by semi-empirical calculations and Hirshfeld surface analysis. Monatsh. Chem.2018, 149, 1759.10.1007/s00706-018-2186-ySearch in Google Scholar

[18] W. Kabsch, XDS. Acta Crystallogr. D2010, 66, 125.10.1107/97809553602060000835Search in Google Scholar

[19] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Overview of the CCP4 suite and current developments. Acta Crystallogr. D2011, 67, 235.10.1107/S0907444910045749Search in Google Scholar PubMed PubMed Central

[20] L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Search in Google Scholar

[21] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr.2003, 36, 1487.10.1107/S0021889803021800Search in Google Scholar

[22] R. W. W. Hooft, L. H. Straver, A. L. Spek, Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr.2008, 41, 96.10.1107/S0021889807059870Search in Google Scholar PubMed PubMed Central

[23] R. I. Cooper, A. L. Thompson, D. J. Watkin, CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J. Appl. Crystallogr.2010, 43, 1100.10.1107/S0021889810025598Search in Google Scholar

[24] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

[25] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr.2008, 41, 466.10.1107/S0021889807067908Search in Google Scholar

[26] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer 17.5, University of Western Australia, Australia, 2017.Search in Google Scholar

[27] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun.2007, 3814.10.1039/b704980cSearch in Google Scholar PubMed

[28] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B2004, 60, 627.10.1107/S0108768104020300Search in Google Scholar PubMed

[29] M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm2002, 4, 378.10.1039/B203191BSearch in Google Scholar

[30] C. Jelsch, K. Ejsmont, L. Huder, The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ2014, 1, 119.10.1107/S2052252514003327Search in Google Scholar PubMed PubMed Central

[31] S. Madan Kumar, B. N. Lakshminarayana, S. Nagaraju, Sushma, S. Ananda, B. C. Manjunath, N. K. Loknath, K. Byrappa, 3D energy frameworks of a potential nutraceutical. J. Mol. Struct.2018, 1173, 300.10.1016/j.molstruc.2018.06.083Search in Google Scholar

[32] A. Tarahhomi, M. Pourayoubi, A. L. Rheingold, J. A. Golen, Different orientations of C=O versus P=O in P(O)NHC(O) skeleton: the first study on an aliphatic diazaphosphorinane with a gauche orientation. Struct. Chem.2011, 22, 201.10.1007/s11224-010-9682-ySearch in Google Scholar

[33] A. Tarahhomi, M. Pourayoubi, J. A. Golen, P. Zargaran, B. Elahi, A. L. Rheingold, M. A. Leyva Ramírez, T. Mancilla Percino, Hirshfeld surface analysis of new phosphoramidates. Acta Crystallogr. B2013, 69, 260.10.1107/S2052519213009445Search in Google Scholar

[34] A. Tarahhomi, A. van der Lee, B. Ośmiałowski, A detailed theoretical and experimental study on the N–H, P=O and C=O stretching frequencies in two new phosphoric triamides and a statistical comparison with analogous structures. Polyhedron2019, 158, 215.10.1016/j.poly.2018.10.045Search in Google Scholar

[35] E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett.1998, 285, 170.10.1016/S0009-2614(98)00036-0Search in Google Scholar

[36] E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr. B1999, 55, 563.10.1107/S0108768199002128Search in Google Scholar PubMed

[37] S. L. Tan, M. M. Jotani, E. R. T. Tiekink, Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E2019, 75, 308.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0005).


Received: 2019-01-24
Accepted: 2019-04-10
Published Online: 2019-05-09
Published in Print: 2019-05-27

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0005/html
Scroll to top button