Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
Abstract
Two new phosphoric triamides having a common part XP(O)[NHCH(CH3)2]2, with X =[2,3,6-F3–C6H2C(O)NH] (1) and [C6H11(CH3)N] (2), were prepared and characterized by spectroscopic techniques (FT-IR and 1H-, 13C-, 31P-NMR) and single crystal X-ray diffraction. The asymmetric unit of 1 is composed of one molecule, whereas for 2 it consists of six symmetry independent molecules. In all molecules, the P atoms are in a distorted tetrahedral environment of one oxygen and three nitrogen atoms. The latter have mainly sp2 character and a nearly planar environment. The crystal structures are stabilized via N–H · · · O hydrogen bond interactions, forming a linear arrangement for 1 and three independent parallel linear chains for 2, along the b and a axis, respectively. The intermolecular interactions in the molecular packing were analyzed using the Hirshfeld surface methodology, two-dimensional (2D) fingerprint plots and enrichment ratios (E). The prevalent interactions revealed by Hirshfeld surfaces are O · · · H type interactions for both structures 1 and 2, additionally C · · · O for 1 and H · · · H interactions for 2. The most favored contacts responsible for the molecular packing are C · · · F, N · · · H and O · · · H for 1 confirmed by E values greater than 1.30, whereas for 2, O · · · H and N · · · H intermolecular interactions with E values about 1.04 representing the favored contacts. Thus, the N–H · · · O hydrogen bond interactions are the dominant interactions in both compounds. For more details, a topological AIM analysis of N–H · · · O hydrogen bond interactions was performed: NCP–H · · · O=C hydrogen bond (the NCP is referred to the nitrogen atom within the C(O)NHP(O) segment) interactions in 1 are stronger than N–H · · · O=P interactions in both 1 and 2. Furthermore, a 3D topology of the molecular packing via the energy framework approach showed that the N–H · · · O hydrogen bond interactions in C(O)NHP(O)-based phosphoric triamide are predominantly electrostatic based, while they are electrostatic-dispersion based for other phosphoric triamides with a [N]P(O)[NH]2 skeleton.
Acknowledgements
Support of this investigation by Semnan University is gratefully acknowledged.
References
[1] L. Maschio, B. Civalleri, P. Ugliengo, A. Gavezzotti, Intermolecular interaction energies in molecular crystals: comparison and agreement of localized Møller–Plesset 2, dispersion-corrected density functional, and classical empirical two-body calculations. J. Phys. Chem. A2011, 115, 11179.10.1021/jp203132kSearch in Google Scholar
[2] A. Gavezzotti, Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. electrostatic and polarization energies in molecular crystals. J. Phys. Chem. B2002, 106, 4145.10.1021/jp0144202Search in Google Scholar
[3] J. J. McKinnon, A. S. Mitchell, M. A. Spackman, Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem. Eur. J.1998, 4, 2136.10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-GSearch in Google Scholar
[4] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm2009, 11, 19.10.1039/B818330ASearch in Google Scholar
[5] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.1993, 98, 5648.10.1063/1.464913Search in Google Scholar
[6] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B1988, 37, 785.10.1103/PhysRevB.37.785Search in Google Scholar
[7] R. F. W. Bader, Atoms in Molecules. A Quantum Theory. Oxford University Press, New York, USA, 1990.10.1002/0470845015.caa012Search in Google Scholar
[8] R. F. W. Bader, The quantum mechanical basis of conceptual chemistry. Monatsh. Chem.2005, 136, 819.10.1007/s00706-005-0307-xSearch in Google Scholar
[9] A. Gavezzotti, Calculation of lattice energies of organic crystals: the PIXEL integration method in comparison with more traditional methods. Z. Kristallogr.2005, 220, 499.10.1524/zkri.220.5.499.65063Search in Google Scholar
[10] C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. Spackman, CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ2017, 4, 575.10.1107/S205225251700848XSearch in Google Scholar
[11] M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun.2015, 51, 3735.10.1039/C4CC09074HSearch in Google Scholar PubMed
[12] W. Zhang, W. Fan, Z. Zhou, J. C. Garrison, Synthesis and evaluation of radiolabeled phosphoramide mustard with selectivity for hypoxic cancer cells. ACS Med. Chem. Lett.2017, 8, 1269.10.1021/acsmedchemlett.7b00355Search in Google Scholar PubMed PubMed Central
[13] T. Miyamoto, T. Kasagami, M. Asai, I. Yamamoto, A novel bioactivation mechanism of phosphoramidate insecticides. Pestic. Biochem. Phys.1999, 63, 151.10.1006/pest.1999.2399Search in Google Scholar
[14] M. Neisius, S. Liang, H. Mispreuve, S. Gaan, Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind. Eng. Chem. Res.2013, 52, 9752.10.1021/ie400914uSearch in Google Scholar
[15] M. Keikha, M. Pourayoubi, A. Tarahhomi, A. van der Lee, Syntheses and structures of four new mixed-amide phosphoric triamides. Acta Crystallogr. C2016, 72, 251.10.1107/S2053229616001595Search in Google Scholar PubMed
[16] A. Saneei, M. Pourayoubi, T. A. Jenny, A. Crochet, K. M. Fromm, E. S. Shchegravina, Different molecular assemblies in two new phosphoric triamides with the same C(O)NHP(O)(NH)2 skeleton: crystallographic study and Hirshfeld surface analysis. Chem. Pap.2017, 71, 1809.10.1007/s11696-017-0168-xSearch in Google Scholar
[17] A. Tarahhomi, A. Van der Lee, Synthesis and crystal structures of new phosphoric triamides: study of intermolecular interactions by semi-empirical calculations and Hirshfeld surface analysis. Monatsh. Chem.2018, 149, 1759.10.1007/s00706-018-2186-ySearch in Google Scholar
[18] W. Kabsch, XDS. Acta Crystallogr. D2010, 66, 125.10.1107/97809553602060000835Search in Google Scholar
[19] M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Overview of the CCP4 suite and current developments. Acta Crystallogr. D2011, 67, 235.10.1107/S0907444910045749Search in Google Scholar PubMed PubMed Central
[20] L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Search in Google Scholar
[21] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Crystallogr.2003, 36, 1487.10.1107/S0021889803021800Search in Google Scholar
[22] R. W. W. Hooft, L. H. Straver, A. L. Spek, Determination of absolute structure using Bayesian statistics on Bijvoet differences. J. Appl. Crystallogr.2008, 41, 96.10.1107/S0021889807059870Search in Google Scholar PubMed PubMed Central
[23] R. I. Cooper, A. L. Thompson, D. J. Watkin, CRYSTALS enhancements: dealing with hydrogen atoms in refinement. J. Appl. Crystallogr.2010, 43, 1100.10.1107/S0021889810025598Search in Google Scholar
[24] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central
[25] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr.2008, 41, 466.10.1107/S0021889807067908Search in Google Scholar
[26] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer 17.5, University of Western Australia, Australia, 2017.Search in Google Scholar
[27] J. J. McKinnon, D. Jayatilaka, M. A. Spackman, Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun.2007, 3814.10.1039/b704980cSearch in Google Scholar PubMed
[28] J. J. McKinnon, M. A. Spackman, A. S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B2004, 60, 627.10.1107/S0108768104020300Search in Google Scholar PubMed
[29] M. A. Spackman, J. J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm2002, 4, 378.10.1039/B203191BSearch in Google Scholar
[30] C. Jelsch, K. Ejsmont, L. Huder, The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ2014, 1, 119.10.1107/S2052252514003327Search in Google Scholar PubMed PubMed Central
[31] S. Madan Kumar, B. N. Lakshminarayana, S. Nagaraju, Sushma, S. Ananda, B. C. Manjunath, N. K. Loknath, K. Byrappa, 3D energy frameworks of a potential nutraceutical. J. Mol. Struct.2018, 1173, 300.10.1016/j.molstruc.2018.06.083Search in Google Scholar
[32] A. Tarahhomi, M. Pourayoubi, A. L. Rheingold, J. A. Golen, Different orientations of C=O versus P=O in P(O)NHC(O) skeleton: the first study on an aliphatic diazaphosphorinane with a gauche orientation. Struct. Chem.2011, 22, 201.10.1007/s11224-010-9682-ySearch in Google Scholar
[33] A. Tarahhomi, M. Pourayoubi, J. A. Golen, P. Zargaran, B. Elahi, A. L. Rheingold, M. A. Leyva Ramírez, T. Mancilla Percino, Hirshfeld surface analysis of new phosphoramidates. Acta Crystallogr. B2013, 69, 260.10.1107/S2052519213009445Search in Google Scholar
[34] A. Tarahhomi, A. van der Lee, B. Ośmiałowski, A detailed theoretical and experimental study on the N–H, P=O and C=O stretching frequencies in two new phosphoric triamides and a statistical comparison with analogous structures. Polyhedron2019, 158, 215.10.1016/j.poly.2018.10.045Search in Google Scholar
[35] E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett.1998, 285, 170.10.1016/S0009-2614(98)00036-0Search in Google Scholar
[36] E. Espinosa, M. Souhassou, H. Lachekar, C. Lecomte, Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr. B1999, 55, 563.10.1107/S0108768199002128Search in Google Scholar PubMed
[37] S. L. Tan, M. M. Jotani, E. R. T. Tiekink, Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. E2019, 75, 308.10.1107/S2056989019001129Search in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0005).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Preparation, structural and spectroscopical properties of silver terbium diphosphate AgTbP2O7
- Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures
- The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3
- Mg[(UO2)2(Ge2O6(OH)2]·(H2O)4.4, a novel compound with mixed germanium coordination: cation disordering and topological features of β-U3O8 type sheets
- Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals
- Organic and Metalorganic Crystal Structures
- Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
- Crystallographic Computing
- HKLF5Tools: a program for processing diffraction data of non-merohedrally twinned crystals
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Preparation, structural and spectroscopical properties of silver terbium diphosphate AgTbP2O7
- Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures
- The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3
- Mg[(UO2)2(Ge2O6(OH)2]·(H2O)4.4, a novel compound with mixed germanium coordination: cation disordering and topological features of β-U3O8 type sheets
- Polarized mapping Raman spectroscopy: identification of particle orientation in biominerals
- Organic and Metalorganic Crystal Structures
- Evaluation of N–H···O hydrogen bond interactions in two new phosphoric triamides with a P(O)[NHCH(CH3)2]2 segment by means of topological (AIM) calculations, Hirshfeld surface analysis and 3D energy framework approach
- Crystallographic Computing
- HKLF5Tools: a program for processing diffraction data of non-merohedrally twinned crystals