Startseite Intermolecular hydrogen bonding H···Cl in crystal structure of palladium(II)-bis(diaminocarbene) complex
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intermolecular hydrogen bonding H···Cl in crystal structure of palladium(II)-bis(diaminocarbene) complex

  • Mikhail A. Kinzhalov EMAIL logo , Sergey V. Baykov , Alexander S. Novikov , Matti Haukka und Vadim P. Boyarskiy EMAIL logo
Veröffentlicht/Copyright: 8. Oktober 2018

Abstract

The reaction of bis(isocyanide)palladium complex cis-[PdCl2(CNXyl)2] (Xyl=2,6-Me2C6H3) with excess of 4,5-dichlorobenzene-1,2-amine in a C2H4Cl2/MeOH mixture affords monocationic bis(diaminocarbene) complex cis-[PdClC{(NHXyl)=NHC6H2Cl2NH2}{C(NHXyl)=NHC6H2Cl2NH2}]Cl (3) in moderate yield (42%). Complex 3 exists in the solid phase in the H-bonded dimeric associate of two single charged organometallic cations and two chloride anions according to X-ray diffraction data. The Hirshfeld surface analysis for the X-ray structure of 3 reveals that the crystal packing is determined primarily by intermolecular contacts H–Cl, H–H, and H–C. The intermolecular hydrogen bonds N–H···Cl and C–H···Cl in the H-bonded dimeric associate of 3 were studied by DFT calculations and topological analysis of the electron density distribution within the framework of QTAIM method, and estimated energies of these supramolecular contacts vary from 1.6 to 9.1 kcal/mol. Such non-covalent bonding means that complex 3 is an anionic receptor for the chloride anions.

Acknowledgments

The synthetic part of this work was supported by Saint Petersburg State University (grant 12.37.214.2016) and the calculations were funded by Russian Foundation for Basic Research (project No. 16-33-60063). Physicochemical studies were performed at the Center for Magnetic Resonance and Center for Chemical Analysis and Materials Research (all belong to Saint Petersburg State University). The authors declare no competing financial interests.

References

[1] P. Hobza, J. Řezáč, Introduction: noncovalent interactions. Chem. Rev.2016, 116, 4911.10.1021/acs.chemrev.6b00247Suche in Google Scholar PubMed

[2] P. A. Kollman, L. C. Allen, Theory of the hydrogen bond. Chem. Rev.1972, 72, 283.10.1021/cr60277a004Suche in Google Scholar

[3] S. J. Grabowski, What is the covalency of hydrogen bonding? Chem. Rev.2011, 111, 2597.10.1021/cr800346fSuche in Google Scholar PubMed

[4] K. T. Mahmudov, A. J. L. Pombeiro, Resonance-assisted hydrogen bonding as a driving force in synthesis and a synthon in the design of materials. Chem. Eur. J.2016, 22, 16356.10.1002/chem.201601766Suche in Google Scholar PubMed

[5] G. Mahmoudi, F. A. Afkhami, A. Castiñeiras, I. García-Santos, A. Gurbanov, F. I. Zubkov, M. P. Mitoraj, M. Kukułka, F. Sagan, D. W. Szczepanik, I. A. Konyaeva, D. A. Safin, Quasi-Aromatic Möbius metal chelates. Inorg. Chem.2018, 57, 4395.10.1021/acs.inorgchem.8b00064Suche in Google Scholar PubMed

[6] E. A. Kvyatkovskaya, V. P. Zaytsev, F. I. Zubkov, P. V. Dorovatovskii, Y. V. Zubavichus, V. N. Khrustalev, Interaction between maleic acid and N-R-furfurylamines: crystal structure of 2-methyl-N-[(5-phenylfuran-2-yl)methyl]propan-2-aminium (2Z)-3-carboxyacrylate and N-[(5-iodofuran-2-yl)methyl]-2-methylpropan-2-aminium (2Z)-3-carboxyprop-2-enoate. Acta Crystallogr. E.2017, 73, 515.10.1107/S2056989017003541Suche in Google Scholar PubMed PubMed Central

[7] L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, Halogen bonding in supramolecular chemistry. Chem. Rev.2015, 115, 7118.10.1021/cr500674cSuche in Google Scholar PubMed

[8] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, The halogen bond. Chem. Rev.2016, 116, 2478.10.1021/acs.chemrev.5b00484Suche in Google Scholar PubMed PubMed Central

[9] F. I. Zubkov, D. F. Mertsalov, V. P. Zaytsev, A. V. Varlamov, A. V. Gurbanov, P. V. Dorovatovskii, T. V. Timofeeva, V. N. Khrustalev, K. T. Mahmudov, Halogen bonding in Wagner-Meerwein rearrangement products. J. Mol. Liq.2018, 249, 949.10.1016/j.molliq.2017.11.116Suche in Google Scholar

[10] N. Q. Shikhaliyev, N. E. Ahmadova, A. V. Gurbanov, A. M. Maharramov, G. Z. Mammadova, V. G. Nenajdenko, F. I. Zubkov, K. T. Mahmudov, A. J. L. Pombeiro, Tetrel, halogen and hydrogen bonds in bis (4-((E)-(2,2-dichloro-1-(4-substitutedphenyl)vinyl)diazenyl)phenyl)methane dyes. Dyes Pigm.2018, 150, 377.10.1016/j.dyepig.2017.12.033Suche in Google Scholar

[11] K. K. Borisova, E. V. Nikitina, R. A. Novikov, V. N. Khrustalev, P. V. Dorovatovskii, Y. V. Zubavichus, M. L. Kuznetsov, V. P. Zaytsev, A. V. Varlamov, F. I. Zubkov, Diels–Alder Reactions between hexafluoro-2-butyne and bis-furyl dienes: kinetic versus thermodynamic control. Chem. Commun.2018, 54, 2850.10.1039/C7CC09466CSuche in Google Scholar PubMed

[12] D. J. Pascoe, K. B. Ling, S. L. Cockroft, The origin of chalcogen-bonding interactions. J. Am. Chem. Soc.2017, 139, 15160.10.1021/jacs.7b08511Suche in Google Scholar PubMed

[13] K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans.2017, 46, 10121.10.1039/C7DT01685ASuche in Google Scholar

[14] H. Zhao, F. P. Gabbai, A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat. Chem.2010, 2, 984.10.1038/nchem.838Suche in Google Scholar PubMed

[15] M. Iwaoka, N. Isozumi, Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules2012, 17, 7266.10.3390/molecules17067266Suche in Google Scholar PubMed PubMed Central

[16] C. Bleiholder, D. B. Werz, H. Koppel, R. Gleiter, Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J. Am. Chem. Soc.2006, 128, 2666.10.1021/ja056827gSuche in Google Scholar PubMed

[17] A. Bauza, T. J. Mooibroek, A. Frontera, The bright future of unconventional sigma/Pi-hole interactions. ChemPhysChem.2015, 16, 2496.10.1002/cphc.201500314Suche in Google Scholar PubMed

[18] A. S. Mahadevi, G. N. Sastry, Cooperativity in noncovalent interactions. Chem. Rev.2016, 116, 2775.10.1021/cr500344eSuche in Google Scholar PubMed

[19] D. A. Dougherty, The cation-Pi interaction. Acc. Chem. Res.2013, 46, 885.10.1021/ar300265ySuche in Google Scholar PubMed PubMed Central

[20] J. C. Ma, D. A. Dougherty, The cation−π interaction. Chem. Rev.1997, 97, 1303.10.1021/cr9603744Suche in Google Scholar PubMed

[21] G. Mahmoudi, S. K. Seth, A. Bauzá, F. I. Zubkov, A. V. Gurbanov, J. White, V. Stilinović, T. Doert, A. Frontera, Pb···X (X=N, S, I) tetrel bonding interactions in Pb(II) complexes: X-ray characterization, hirshfeld surfaces and DFT calculations. CrystEngComm.2018, 20, 2812.10.1039/C8CE00110CSuche in Google Scholar

[22] A. S. Mahadevi, G. N. Sastry, Cation-Pi interaction: its role and relevance in chemistry, biology, and material science. Chem. Rev.2013, 113, 2100.10.1021/cr300222dSuche in Google Scholar PubMed

[23] B. L. Schottel, H. T. Chifotides, K. R. Dunbar, Anion-Pi interactions. Chem. Soc. Rev.2008, 37, 68.10.1039/B614208GSuche in Google Scholar

[24] J. Lopez-Andarias, A. Frontera, S. Matile, Anion-Pi catalysis on fullerenes. J. Am. Chem. Soc.2017, 139, 13296.10.1021/jacs.7b08113Suche in Google Scholar PubMed

[25] V. W. Yam, V. K. Au, S. Y. Leung, Light-emitting self-assembled materials based on d(8) and d(10) transition metal complexes. Chem. Rev.2015, 115, 7589.10.1021/acs.chemrev.5b00074Suche in Google Scholar PubMed

[26] S. Sculfort, P. Braunstein, Intramolecular D10-D10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev.2011, 40, 2741.10.1039/c0cs00102cSuche in Google Scholar PubMed

[27] I. Eryazici, C. N. Moorefield, G. R. Newkome, Square-planar Pd(II), Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities. Chem. Rev.2008, 108, 1834.10.1021/cr0781059Suche in Google Scholar PubMed

[28] G. Mahmoudi, A. Bauzá, A. V. Gurbanov, F. I. Zubkov, W. Maniukiewicz, A. Rodríguez-Diéguez, E. López-Torres, A. Frontera, The role of unconventional stacking interactions in the supramolecular assemblies of Hg(II) coordination compounds. CrystEngComm.2016, 18, 9056.10.1039/C6CE02073ASuche in Google Scholar

[29] G. Mahmoudi, E. Zangrando, M. P. Mitoraj, A. V. Gurbanov, F. I. Zubkov, M. Moosavifar, I. A. Konyaeva, A. M. Kirillov, D. A. Safin, Extended lead(II) architectures engineered via tetrel bonding interactions. New J. Chem.2018, 42, 4959.10.1039/C8NJ00525GSuche in Google Scholar

[30] G. A. Cisneros, K. T. Wikfeldt, L. Ojamae, J. Lu, Y. Xu, H. Torabifard, A. P. Bartok, G. Csanyi, V. Molinero, F. Paesani, Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem. Rev.2016, 116, 7501.10.1021/acs.chemrev.5b00644Suche in Google Scholar PubMed PubMed Central

[31] L. C. Ch’ng, A. K. Samanta, G. Czako, J. M. Bowman, H. Reisler, Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer. J. Am. Chem. Soc.2012, 134, 15430.10.1021/ja305500xSuche in Google Scholar PubMed

[32] J. R. Wagner, C. T. Lee, J. D. Durrant, R. D. Malmstrom, V. A. Feher, R. E. Amaro, Emerging computational methods for the rational discovery of allosteric drugs. Chem. Rev.2016, 116, 6370.10.1021/acs.chemrev.5b00631Suche in Google Scholar PubMed PubMed Central

[33] V. Venditti, T. K. Egner, G. M. Clore, Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution X-ray scattering. Chem. Rev.2016, 116, 6305.10.1021/acs.chemrev.5b00592Suche in Google Scholar PubMed PubMed Central

[34] K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Non-covalent interactions in the synthesis of coordination compounds: recent advances. Coord. Chem. Rev.2017, 345, 54.10.1016/j.ccr.2016.09.002Suche in Google Scholar

[35] A. A. Shetnev, F. I. Zubkov, The latest advances in chemistry of 1,2,4-oxadiazines (microreview). Chem. Heterocycl. Compd.2017, 53, 495.10.1007/s10593-017-2081-1Suche in Google Scholar

[36] I. V. Ledenyova, A. V. Falaleev, K. S. Shikhaliev, E. A. Ryzhkova, F. I. Zubkov, Unexpected reaction of ethyl 4-(chloromethyl)pyrazolo-[5,1-c][1,2,4]triazine-3-carboxylates with thiourea and its mechanism. Russ. J. General Chem.2018, 88, 73.10.1134/S1070363218010115Suche in Google Scholar

[37] A. S. Mikherdov, A. S. Novikov, M. A. Kinzhalov, V. P. Boyarskiy, G. L. Starova, A. Y. Ivanov, V. Y. Kukushkin, Halides held by bifurcated chalcogen–hydrogen bonds. Effect of μ (S,N–H) Cl contacts on dimerization of Cl(carbene)Pd II species. Inorg. Chem.2018, 57, 3420.10.1021/acs.inorgchem.8b00190Suche in Google Scholar PubMed

[38] A. Mikherdov, A. Novikov, M. Kinzhalov, A. Zolotarev, Intra-/intermolecular bifurcated chalcogen bonding in crystal structure of thiazole/thiadiazole derived binuclear (diaminocarbene)PdII complexes. Crystals2018, 8, 112.10.3390/cryst8030112Suche in Google Scholar

[39] V. P. Boyarskiy, K. V. Luzyanin, V. Y. Kukushkin, Acyclic diaminocarbenes (ADCs) as a promising alternative to N-heterocyclic carbenes (NHCs) in transition metal catalyzed organic transformations. Coord. Chem. Rev.2012, 256, 2029.10.1016/j.ccr.2012.04.022Suche in Google Scholar

[40] V. P. Boyarskiy, N. A. Bokach, K. V. Luzyanin, V. Y. Kukushkin, Metal-mediated and metal-catalyzed reactions of isocyanides. Chem. Rev.2015, 115, 2698.10.1021/cr500380dSuche in Google Scholar PubMed

[41] M. A. Kinzhalov, K. V. Luzyanin, V. P. Boyarskiy, M. Haukka, V. Y. Kukushkin, ADC-based palladium catalysts for aqueous Suzuki–Miyaura cross-coupling exhibit greater activity than the most advantageous catalytic systems. Organometallics2013, 32, 5212.10.1021/om4007592Suche in Google Scholar

[42] S. A. Timofeeva, M. A. Kinzhalov, E. A. Valishina, K. V. Luzyanin, V. P. Boyarskiy, T. M. Buslaeva, M. Haukka, V. Y. Kukushkin, Application of palladium complexes bearing acyclic amino(hydrazido)carbene ligands as catalysts for copper-free sonogashira cross-coupling. J. Catal.2015, 329, 449.10.1016/j.jcat.2015.06.001Suche in Google Scholar

[43] E. A. Valishina, M. F. C. G. Da Silva, M. A. Kinzhalov, S. A. Timofeeva, T. M. Buslaeva, M. Haukka, A. J. L. Pombeiro, V. P. Boyarskiy, V. Y. Kukushkin, K. V. Luzyanin, Palladium-ADC complexes as efficient catalysts in copper-free and room temperature sonogashira coupling. J. Mol. Catal. A: Chem.2014, 395, 162.10.1016/j.molcata.2014.08.018Suche in Google Scholar

[44] A. S. K. Hashmi, C. Lothschutz, C. Boohling, F. Rominger, From isonitriles to carbenes: synthesis of new NAC– and NHC–palladium(II) compounds and their catalytic activity. Organometallics2011, 30, 2411.10.1021/om200141sSuche in Google Scholar

[45] S. A. Miltsov, V. S. Karavan, V. P. Boyarsky, S. Gómez-de Pedro, J. Alonso-Chamarro, M. Puyol, New acyclic Pd–diaminocarbene catalyst for Suzuki arylation of meso-chlorosubstituted tricarboindocyanine dyes. Tetrahedron Lett.2013, 54, 1202.10.1016/j.tetlet.2012.12.060Suche in Google Scholar

[46] M. C. BlancoJaimes, C. R. N. Böhling, J. M. Serrano-Becerra, A. S. K. Hashmi, Highly active mononuclear NAC–Gold(I) catalysts. Angew. Chem. Int. Ed.2013, 52, 7963.10.1002/anie.201210351Suche in Google Scholar PubMed

[47] E. A. Savicheva, D. V. Kurandina, V. A. Nikiforov, V. P. Boyarskiy, Hydrazinoaminocarbene-palladium complexes as easily accessible and convenient catalysts for copper-free sonogashira reactions. Tetrahedron Lett.2014, 55, 2101.10.1016/j.tetlet.2014.02.044Suche in Google Scholar

[48] L. M. Slaughter, Acyclic aminocarbenes in catalysis. ACS Catal.2012, 2, 1802.10.1021/cs300300ySuche in Google Scholar

[49] L. M. Slaughter, “Covalent self-assembly” of acyclic diaminocarbene ligands at metal centers. Comm. Inorg. Chem.2008, 29, 46.10.1080/02603590802053139Suche in Google Scholar

[50] G. D. Frey, E. Herdtweck, W. A. Herrmann, Structural investigations of metalcarbonyl complexes with acyclic diamino carbenes. J. Organomet. Chem.2006, 691, 2465.10.1016/j.jorganchem.2006.01.033Suche in Google Scholar

[51] G. D. Frey, W. A. Herrmann, Novel acyclic carbene-substituted phospha-palladacycles. J. Organomet. Chem.2005, 690, 5876.10.1016/j.jorganchem.2005.07.055Suche in Google Scholar

[52] K. Denk, P. Sirsch, W. A. Herrmann, The first metal complexes of bis(diisopropylamino)carbene: synthesis, structure and ligand properties. J. Organomet. Chem.2002, 649, 219.10.1016/S0022-328X(02)01133-6Suche in Google Scholar

[53] W. A. Herrmann, K. Öfele, D. V. Preysing, E. Herdtweck, Metal complexes of acyclic diaminocarbenes: links between N-heterocyclic carbene (NHC)- and Fischer-carbene complexes. J. Organomet. Chem.2003, 684, 235.10.1016/S0022-328X(03)00754-XSuche in Google Scholar

[54] D. R. Snead, I. Chiviriga, K. A. Abboud, S. Hong, A new route to acyclic diaminocarbenes via lithium-halogen exchange. Org. Lett.2009, 11, 3274.10.1021/ol9013156Suche in Google Scholar

[55] M.-T. Lee, C.-H. Hu, Density functional study of N-heterocyclic and diamino carbene complexes: comparison with phosphines. Organometallics2004, 23, 976.10.1021/om0341451Suche in Google Scholar

[56] Y. A. Wanniarachchi, L. M. Slaughter, One-step assembly of a chiral palladium bis(acyclic diaminocarbene) complex and its unexpected oxidation to a bis(amidine) complex. Chem. Commun.2007, 31, 3294.10.1039/b703769dSuche in Google Scholar

[57] R. W. Alder, P. R. Allen, M. Murray, A. G. Orpen, Bis(diisopropylamino)carbene. Angew. Chem. Int. Ed.1996, 35, 1121.10.1002/anie.199611211Suche in Google Scholar

[58] J. Vignolle, X. Catton, D. Bourissou, Stable noncyclic singlet carbenes. Chem. Rev.2009, 109, 3333.10.1021/cr800549jSuche in Google Scholar

[59] B. V Johnson, J. E. Shade, Trisubstituted diaminocarbene complexes of iron. J. Organomet. Chem.1979, 179, 357.10.1016/S0022-328X(00)91751-0Suche in Google Scholar

[60] A. L. Steinmetz, B. V Johnson, Reactions of (.eta.5-cyclopentadienyl)ruthenium isocyanide complexes with primary and secondary amines. Organometallics1983, 2, 705.10.1021/om00078a002Suche in Google Scholar

[61] R. W. Alder, M. E. Blake, J. M. Oliva, Diaminocarbenes; calculation of barriers to rotation about Ccarbene−N bonds, barriers to dimerization, proton affinities, and 13C NMR shifts. J. Phys. Chem. A1999, 103, 11200.10.1021/jp9934228Suche in Google Scholar

[62] I. A. Boyarskaya, V. P. Boyarskii, Theoretical study of the structure of acyclic diaminocarbene ligands in Pd(II) complexes. Russ. J. General Chem.2015, 85, 894.10.1134/S1070363215040222Suche in Google Scholar

[63] A. I. Moncada, S. Manne, J. M. Tanski, L. M. Slaughter, Modular chelated palladium diaminocarbene complexes: synthesis, characterization, and optimization of catalytic suzuki-miyaura cross-coupling activity by ligand modification. Organometallics2006, 25, 491.10.1021/om050786fSuche in Google Scholar

[64] M. A. Kinzhalov, S. A. Timofeeva, K. V. Luzyanin, V. P. Boyarskiy, A. A. Yakimanskiy, M. Haukka, V. Y. Kukushkin, Palladium(II)-mediated addition of benzenediamines to isocyanides: generation of three types of diaminocarbene ligands depending on the isomeric structure of the nucleophile. Organometallics2016, 35, 218.10.1021/acs.organomet.5b00936Suche in Google Scholar

[65] C.-O. Ng, S.-C. Cheng, W.-K. Chu, K.-M. Tang, S.-M. Yiu, C.-C. Ko, Luminescent rhenium(I) pyridyldiaminocarbene complexes: photophysics, anion-binding, and CO2-capturing properties. Inorg. Chem.2016, 55, 7969.10.1021/acs.inorgchem.6b01017Suche in Google Scholar PubMed

[66] Y. A. Wanniarachchi, L. M. Slaughter, Reversible chelate ring opening of a sterically crowded palladium bis(acyclic diaminocarbene) complex. Organometallics2008, 27, 1055.10.1021/om700866pSuche in Google Scholar

[67] Y. A. Wanniarachchi, S. S. Subramanium, L. M. Slaughter, Palladium complexes of bis(acyclic diaminocarbene) ligands with chiral N-substituents and 8-membered chelate rings. J. Organomet. Chem.2009, 694, 3297.10.1016/j.jorganchem.2009.06.007Suche in Google Scholar

[68] M. O. Owusu, S. Handa, L. M. Slaughter, Chugaev-type bis(acyclic diaminocarbenes) as a new ligand class for the palladium-catalyzed Mizoroki–Heck reaction. Appl. Organomet. Chem.2012, 26, 712.10.1002/aoc.2915Suche in Google Scholar

[69] M. Knorn, E. Lutsker, O. Reiser, Synthesis of new chiral bidentate isonitrile–acyclic diaminocarbene palladium(II) compounds and their catalytic activity. Organometallics2015, 34, 4515.10.1021/acs.organomet.5b00516Suche in Google Scholar

[70] A. Marchenko, G. Koidan, A. N. Hurieva, Y. Vlasenko, A. Kostyuk, A. Biffis, Chelate palladium(II) complexes with saturated N-phosphanyl-N-heterocyclic carbene ligands: synthesis and catalysis. Organometallics2016, 35, 762.10.1021/acs.organomet.5b01019Suche in Google Scholar

[71] Y. A. Wanniarachchi, Y. Kogiso, L. M. Slaughter, Chiral palladium bis(acyclic diaminocarbene) complexes as enantioselective catalysts for the Aza-Claisen rearrangement. Organometallics2008, 27, 21.10.1021/om701029jSuche in Google Scholar

[72] M. A. Kinzhalov, G. L. Starova, V. P. Boyarskiy, Interaction of benzene-1,2-diamines with isocyanide complexes of palladium(II): insight into the mechanism. Inorg. Chim. Acta2017, 455, 607.10.1016/j.ica.2016.05.014Suche in Google Scholar

[73] M. A. Kinzhalov, A. M. Borozdinova, I. A. Boyarskaya, M. Y. Skripkin, V. P. Boyarskii, Reversible chelating in acyclic diaminocarbene palladium complex containing hydrazide fragment. Russ. J. General Chem.2014, 84, 2138.10.1134/S1070363214110164Suche in Google Scholar

[74] C. Bartolome, Z. Ramiro, P. Perez-Galan, C. Bour, M. Raducan, A. M. Echavarren, P. Espinet, Gold(I) complexes with hydrogen-bond supported heterocyclic carbenes as active catalysts in reactions of 1,6-enynes. Inorg. Chem.2008, 47, 11391.10.1021/ic801446vSuche in Google Scholar PubMed

[75] C. Bartolomé, M. Carrasco-Rando, S. Coco, C. Cordovilla, P. Espinet, J. M. Martín-Alvarez, Structural switching in luminescent polynuclear gold imidoyl complexes by intramolecular hydrogen bonding. Organometallics2006, 25, 2700.10.1021/om0601753Suche in Google Scholar

[76] S. Handa, L. M. Slaughter, Enantioselective alkynylbenzaldehyde cyclizations catalyzed by chiral gold(I) acyclic diaminocarbene complexes containing weak Au-arene interactions. Angew. Chem. Int. Ed.2012, 51, 2912.10.1002/anie.201107789Suche in Google Scholar PubMed

[77] E. L. Rosen, D. H. Sung, Z. Chen, V. M. Lynch, C. W. Bielawski, Olefin metathesis catalysts containing acyclic diaminocarbenes. Organometallics2010, 29, 250.10.1021/om9008718Suche in Google Scholar

[78] E. L. Rosen, M. D. Sanderson, S. Saravanakumar, C. W. Bielawski, Synthesis and study of the first N-aryl acyclic diaminocarbene and its transition-metal complexes. Organometallics2007, 26, 5774.10.1021/om7007925Suche in Google Scholar

[79] M. A. Kinzhalov, A. S. Novikov, A. N. Chernyshev, V. V. Suslonov, Intermolecular hydrogen bonding H···Cl− in the solid palladium(II)-diaminocarbene complexes. Z. Kristallogr. – Cryst. Mater.2017, 232, 299.10.1515/zkri-2016-2018Suche in Google Scholar

[80] D. M. Ivanov, M. A. Kinzhalov, A. S. Novikov, I. V. Ananyev, A. A. Romanova, V. P. Boyarskiy, M. Haukka, V. Y. Kukushkin, The H2C(X)–X···X– (X=Cl, Br) halogen bonding of dihalomethanes. Cryst. Growth Des.2017, 17, 1353.10.1021/acs.cgd.6b01754Suche in Google Scholar

[81] M. A. Kinzhalov, A. A. Zolotarev, V. P. Boyarskiy, Crystal structure of cis-[PdCl2(CNMes)2]. J. Struct. Chem.2016, 57, 822.10.1134/S0022476616040302Suche in Google Scholar

[82] APEX2 – Software Suite for Crystallographic Programs, Bruker AXS, Inc.: Madison, WI, USA, 2009.Suche in Google Scholar

[83] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C Struct. Chem.2015, 71, 3.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

[84] G. M. Sheldrick, SADABS – Bruker Nonius Scaling and Absorption Correction, Bruker AXS, Inc.: Madison, Wisconsin, USA, 2012.Suche in Google Scholar

[85] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.2009, 42, 339.10.1107/S0021889808042726Suche in Google Scholar

[86] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, CrystalExplorer (Version 3.1). Univ. West. Aust.2012.Suche in Google Scholar

[87] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm.2009, 11, 19.10.1039/B818330ASuche in Google Scholar

[88] J. Da Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys.2008, 10, 6615.10.1039/b810189bSuche in Google Scholar PubMed

[89] A. S. Mikherdov, M. A. Kinzhalov, A. S. Novikov, V. P. Boyarskiy, I. A. Boyarskaya, M. S. Avdontceva, V. Y. Kukushkin, Ligation-enhanced π-hole···π interactions involving isocyanides: effect of π-hole···π noncovalent bonding on conformational stabilization of acyclic diaminocarbene ligands. Inorg. Chem.2018, 57, 6722.10.1021/acs.inorgchem.8b01027Suche in Google Scholar PubMed

[90] L. Biancalana, L. K. Batchelor, T. Funaioli, S. Zacchini, M. Bortoluzzi, G. Pampaloni, P. J. Dyson, F. Marchetti, α-Diimines as versatile, derivatizable ligands in ruthenium(II) p-cymene anticancer complexes. Inorg. Chem.2018, 57, 6669.10.1021/acs.inorgchem.8b00882Suche in Google Scholar PubMed

[91] B. S. Omar, J. Mallah, M. Ataya, B. Li, X. Zhou, S. Malakar, A. S. Goldman, F. Hasanayn, H2 Addition to pincer iridium complexes yielding Trans-dihydride products: unexpected correlations of bond strength with bond length and vibrational frequencies. Inorg. Chem.2018, 57, 7516.10.1021/acs.inorgchem.7b03086Suche in Google Scholar PubMed

[92] T. Takao, S. Horikoshi, T. Kawashima, S. Asano, Y. Takahashi, A. Sawano, H. Suzuki, Catalytic hydrogenation of benzonitrile by triruthenium clusters: consecutive transformations of benzonitrile on the face of a Ru3 plane. Organometallics2018, 37, 1598.10.1021/acs.organomet.8b00165Suche in Google Scholar

[93] E. Rusbridge, Y. Peng, A. K. Powell, D. Robinson, A. Fitzpatrick, An octahedral tetrachlorido Fe(II) complex with aminopyrazinium ligands from a serendipitous redox synthesis exhibiting magnetic exchange through non-covalent 3-D architectures. Dalton Trans.2018, 47, 7644.10.1039/C8DT01401ASuche in Google Scholar PubMed

[94] Ç. A. Demircan, U. Bozkaya, Transition metal cation-π interactions: complexes formed by Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ binding with benzene molecules. J. Phys. Chem. A2017, 121, 6500.10.1021/acs.jpca.7b05759Suche in Google Scholar

[95] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Orliaro, M. Bearpark, J . J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Startmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zarkrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Faresman, J. V. Ortiz, J. Cioslowski, and J. Fox, In Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2010.Suche in Google Scholar

[96] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem.2012, 33, 580.10.1002/jcc.22885Suche in Google Scholar

[97] S. A. Katkova, M. A. Kinzhalov, P. M. Tolstoy, A. S. Novikov, V. P. Boyarskiy, A. Y. Ananyan, P. V. Gushchin, M. Haukka, A. A. Zolotarev, A. Y. Ivanov, S. S. Zlotsky, V. Y. Kukushkin, Diversity of isomerization patterns and protolytic forms in aminocarbene PdII and PtII complexes formed upon addition of N,N′-diphenylguanidine to metal-activated isocyanides. Organometallics2017, 36, 4145.10.1021/acs.organomet.7b00569Suche in Google Scholar

[98] R. A. Michelin, L. Zanotto, D. Braga, P. Sabatino, R. J. Angelici, Transition-metal-promoted cyclization reactions of isocyanide ligands. Synthesis of cyclic diaminocarbenes from isocyanide complexes of palladium(II) and platinum(II) and X-ray structure of cis-Br2Pt[CN(C6H4-p-Me)CH2CH2N(H)](PPh3). Inorg. Chem.1988, 27, 93.10.1002/chin.198817298Suche in Google Scholar

[99] H. F. Allen, O. Kennard, D. G. Watson, L. Brammer, A. Guy Orpen, T. Taylor, Tables of bond lengths determined by X-ray and neutron diffraction. Part I. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 21987, 1987, S1.10.1039/p298700000s1Suche in Google Scholar

[100] A. Bondi, Van Der Waals Volumes and Radii. J. Phys. Chem.1964, 68, 441.10.1021/j100785a001Suche in Google Scholar

[101] K. I. Kulish, A. S. Novikov, P. M. Tolstoy, D. S. Bolotin, N. A. Bokach, A. A. Zolotarev, V. Y. Kukushkin, Solid state and dynamic solution structures of O-carbamidine amidoximes gives further insight into the mechanism of zinc(II)-mediated generation of 1,2,4-oxadiazoles. J. Mol. Struct.2016, 1111, 142.10.1016/j.molstruc.2016.01.038Suche in Google Scholar

[102] A. A. Melekhova, A. S. Novikov, K. V. Luzyanin, N. A. Bokach, G. L. Starova, V. V. Gurzhiy, V. Y. Kukushkin, Tris-isocyanide copper(I) complexes: synthetic, structural, and theoretical study. Inorg. Chim. Acta2015, 434, 31.10.1016/j.ica.2015.05.002Suche in Google Scholar

[103] T. V. Serebryanskaya, A. S. Novikov, P. V. Gushchin, M. Haukka, R. E. Asfin, P. M. Tolstoy, V. Y. Kukushkin, Identification and H(D)-bond energies of C–H(D)···Cl interactions in chloride–haloalkane clusters: a combined X-ray crystallographic, spectroscopic, and theoretical study. Phys. Chem. Chem. Phys.2016, 18, 14104.10.1039/C6CP00861ESuche in Google Scholar

[104] E. Espinosa, E. Molins, C. Lecomte, Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett.1998, 285, 170.10.1016/S0009-2614(98)00036-0Suche in Google Scholar

[105] M. V. Vener, A. N. Egorova, A. V. Churakov, V. G. Tsirelson, Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions. J. Comput. Chem.2012, 33, 2303.10.1002/jcc.23062Suche in Google Scholar

[106] T. Steiner, The hydrogen bond in the solid state. Angew. Chem. Int. Edit.2002, 41, 48.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2100).


Received: 2018-05-15
Accepted: 2018-09-25
Published Online: 2018-10-08
Published in Print: 2019-03-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2018-2100/html
Button zum nach oben scrollen