Abstract
In this paper, we present a systematic quantum-mechanical density functional theory (DFT) study of adsorption of small gas molecules in cation-exchanged Engelhard titanosilicate ETS-10 crystalline materials. Adsorbates with a range of polarities were considered, ranging from polar (H2O), quadrupolar (CO2 and N2), to apolar (CH4) atmospheric gases. Starting from the base-case of Na-ETS-10, other extra framework cations such as Li+, K+, Rb+ and Cs+ were considered. The DFT calculations were performed with the M06-L functional and were corrected for basis set superposition error with the counterpoise method in order to provide accurate and robust geometries and adsorption energies. For all adsorbates, the adsorption enthalpies decrease in the order Li+>Na+>K+>Rb+>Cs+, while adsorbate – cation interaction distances increase along the same order. For the two extreme cases, the enthalpies calculated at the M06-L/6-31++G** level of theory for CH4, N2, CO2, and H2O interaction with Li+(Cs+) exchanged materials are −21.8 (−1.7) kJ·mol−1, −19.0 (−10.7) kJ·mol−1, −34.4 (−21.3) kJ·mol−1, and −70.5 (−36.1) kJ·mol−1, respectively. Additionally, the calculated vibrational frequencies are found to be in quite good agreement with the characteristic vibrational modes of alkali metal cation-exchanged ETS-10 and also with the available experimental frequencies for CH4, N2, CO2, and H2O interactions with alkali metal cations in the 12-membered channel of ETS-10.
Acknowledgments
The authors thank Dr. Moisés L. Pinto, University of Lisbon, for fruitful discussions. This work was developed in the scope of the Projects POCI-01-0145-FEDER-007679 | UID/CTM/50011/2013 (CICECO), PTDC/EQU-EQU/100476/2008 and Programa Investigador FCT, financed by national funds through the FCT/MEC and cofinanced by FEDER under the PT2020 Partnership Agreement. RSP gratefully acknowledges a post-doctoral fellowship from FCT with reference SFRH/BPD/70283/2010 and the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, for the award of National Post-Doctoral Fellowship (SERB-NPDF) with reference PDF/2017/001252.
References
[1] Frequently Asked Questions About Landfill Gas and How It Affects Public Health, Safety, and the Environment; United States Environmental Protection Agency, Office of Air and Radiation. 2008, http://www.midland-mi.org/DocumentCenter/View/1858/Midland-Green-Project.Suche in Google Scholar
[2] R. T. Yang, E. S. Kikkinides, New sorbents for Olefin/Paraffin separations by adsorption via π-complexation. AIChE J.1995, 41, 509.10.1002/aic.690410309Suche in Google Scholar
[3] O. Oleksiienko, C. Wolkersdorfer, M. Sillanpää, Titanosilicates in cation adsorption and cation exchange – a review. Chem. Eng. J.2017, 317, 570.10.1016/j.cej.2017.02.079Suche in Google Scholar
[4] S. M. Kuznicki, Large-pored crystalline titanium molecular sieve zeolites. US Patent 4853202 A, August 1, 1989.Suche in Google Scholar
[5] M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, S. Lidin, Structure of the microporous titanosilicate ETS-10. Nature1994, 367, 347.10.1016/S0167-2991(06)81181-XSuche in Google Scholar
[6] M. W. Anderson, O. Terasaki, T. Ohsuna, P. J. O. Malley, A. Philippou, S. P. Mackay, A. Ferreira, J. Rocha, S. Lidin, Microporous titanosilicate ETS-10: a structural survey. Phil. Mag. B1995, 71, 813.10.1080/01418639508243589Suche in Google Scholar
[7] T. K. Das, A. J. Chandwadkar, S. Sivasanker, Studies on the synthesis, characterization and catalytic properties of the large pore titanosilicate, ETS-10. J. Mol. Catal. A: Chem.1996, 107, 199.10.1016/1381-1169(95)00219-7Suche in Google Scholar
[8] X. Yang, P. W. Blosser, Location and bonding of cations in ETS-10 titanosilicate molecular sieve: a multinuclear NMR investigation. Zeolites1996, 17, 237.10.1016/0144-2449(96)00026-7Suche in Google Scholar
[9] N. A. Al-Baghli, K. F. Loughlin, Adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J. Chem. Eng. Data2005, 50, 843.10.1021/je0496793Suche in Google Scholar
[10] A. Ansón, S. M. Kuznicki, T. Kuznicki, T. Haastrup, Y. Wang, C. C. H. Lin, J. A. Sawada, E. M. Eyring, D. Hunter, Adsorption of argon, oxygen, and nitrogen on silver exchanged ETS-10 molecular sieve. Microp. Mesopor. Mater.2008, 109, 577.10.1016/j.micromeso.2007.04.026Suche in Google Scholar
[11] A. Nalaparaju, X. S. Zhao, J. Jiang, Molecular interplay of cations and nonpolar/polar sorbates in titanosilicate ETS-10. J. Phys. Chem. C2008, 112, 12861.10.1021/jp801387fSuche in Google Scholar
[12] A. Anson, C. C. H. Lin, S. M. Kuznicki, J. A. Sawada, Adsorption of carbon dioxide, ethane, and methane on titanosilicate type molecular sieves. Chem. Eng. Sci.2009, 64, 3683.10.1016/j.ces.2009.05.024Suche in Google Scholar
[13] S. W. Park, Y. H. Yun, S. D. Kim, S. T. Yang, W. S. Ahn, G. Seo, W. J. Kim, CO2 retention ability on alkali cation exchanged titanium silicate, ETS-10. J. Porous Mater.2009, 17, 589.10.1007/s10934-009-9328-xSuche in Google Scholar
[14] M. Shi, J. Kim, J. A. Sawada, J. Lam, S. Sarabadan, T. M. Kuznicki, S. M. Kuznicki, Production of argon free oxygen by adsorptive air separation on Ag-ETS-10. AIChE J.2013, 59, 982.10.1002/aic.13879Suche in Google Scholar
[15] A. Anson, C. C. H. Lin, T. M. Kuznicki, S. M. Kuznicki, Separation of ethylene/ethane mixtures by adsorption on small-pored titanosilicate molecular sieves. Chem. Eng. Sci.2010, 65, 807.10.1016/j.ces.2009.09.033Suche in Google Scholar
[16] A. Anson, Y. Wang, C. C. H. Lin, T. M. Kuznicki, S. M. Kuznicki, Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci.2008, 63, 4171.10.1016/j.ces.2008.05.038Suche in Google Scholar
[17] S. M. Kuznicki, A. Anson, A. Koenig, T. M. Kuznicki, T. Haastrup, E. M. Eyring, D. Hunter, Xenon adsorption on modified ETS-10. J. Phys. Chem. C2007, 111, 1560.10.1021/jp067630tSuche in Google Scholar
[18] D. G. Pahinkar, S. Garimella, T. R. Robbins, Feasibility of temperature swing adsorption in adsorbent-coated microchannels for natural gas purification. Ind. Eng. Chem. Res.2017, 56, 5403.10.1021/acs.iecr.7b00389Suche in Google Scholar
[19] A. J. M. de Man, J. Sauer, Coordination, structure, and vibrational spectra of titanium in silicates and zeolites in comparison with related molecules. An ab initio study. J. Phys. Chem.1996, 100, 5025.10.1021/jp952790iSuche in Google Scholar
[20] W. Ching, Y.-N. Xu, Z. Gu, Structure and properties of microporous titanosilicate determined by first-principles calculations. Phys. Rev. B1996, 54, R15585.10.1103/PhysRevB.54.R15585Suche in Google Scholar PubMed
[21] S. Bordiga, G. Turnes Palomino, A. Zecchina, G. Ranghino, E. Giamello, C. Lamberti, Stoichiometric and sodium-doped titanium silicate molecular sieve containing atomically defined –OTiOTiO– chains: quantum ab initio calculations, spectroscopic properties, and reactivity. J. Chem. Phys.2000, 112, 3859.10.1063/1.480533Suche in Google Scholar
[22] A. M. Zimmerman, D. J. Doren, R. F. Lobo, Electronic and geometric properties of ETS-10: QM/MM studies of cluster models. J. Phys. Chem. B2006, 110, 8959.10.1021/jp0608877Suche in Google Scholar PubMed
[23] M. Koç, S. Galioglu, D. Toffoli, H. Ustunel, B. Akata, Understanding the effects of ion-exchange in titanosilicate ETS-10: a joint theoretical and experimental study. J. Phys. Chem. C2014, 118, 27281.10.1021/jp503852tSuche in Google Scholar
[24] M. Guo, Z. Feng, G. Li, J. P. Hofmann, E. A. Pidko, P. C. M. M. Magusin, Q. Guo, B. M. Weckhuysen, E. J. M. Hensen, F. Fan, C. Li, “Extracting” the key fragment in ETS-10 crystallization and its application in AM-6 assembly. Chemistry2012, 18, 12078.10.1002/chem.201200875Suche in Google Scholar PubMed
[25] R. S. Pillai, M. Jorge, J. R. B. Gomes, Interaction of atmospheric gases with ETS-10: a DFT study. Microp. Mesopor. Mater.2014, 190, 38.10.1016/j.micromeso.2014.01.022Suche in Google Scholar
[26] S. B. Waghmode, R. Vetrivel, C. S. Gopinath, S. Sivasanker, Influence of cation exchange on M-Pt-ETS-10 molecular sieve: correlation between ab initio results, catalytic activity, and physicochemical investigations. J. Phys. Chem. B2004, 108, 11541.10.1021/jp0490249Suche in Google Scholar
[27] A. M. Shough, D. J. Doren, B. Ogunnaike, Transition metal substitution in ETS-10: DFT calculations and a simple model for electronic structure prediction. Chem. Mater.2009, 21, 1232.10.1021/cm8021177Suche in Google Scholar
[28] Y. Zhao, D. G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys.2006, 125, 194101.10.1063/1.2370993Suche in Google Scholar PubMed
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Rev. B.01. Gaussian, Inc., Wallingford, CT, 2009.Suche in Google Scholar
[30] M. Shi, Applications of titanosilicate molecular sieves in gas separation, PhD Thesis, Department of Chemical and Materials Engineering, University of Alberta Edmonton.Suche in Google Scholar
[31] R. Valero, J. R. B. Gomes, D. G. Truhlar, F. Illas, Good performance of the M06 family of hybrid meta generalized gradient approximation density functionals on a difficult case: CO adsorption on MgO(001). J. Chem. Phys.2008, 129, 124710.10.1063/1.2982923Suche in Google Scholar PubMed
[32] R. Valero, J. R. B. Gomes, D. G. Truhlar, F. Illas, Density functional study of CO and NO adsorption on Ni-doped MgO(100). J. Chem. Phys.2010, 132, 104701.10.1063/1.3340506Suche in Google Scholar PubMed
[33] J. Toda, M. Fischer, M. Jorge, J. R. B. Gomes, Water adsorption on a copper formate paddlewheel model of CuBTC: a comparative MP2 and DFT study. Chem. Phys. Lett.2013, 587, 7.10.1016/j.cplett.2013.09.049Suche in Google Scholar
[34] J. P. P. Ramalho, J. R. B. Gomes, F. Illas, Accounting for van Der Waals interactions between adsorbates and surfaces in density functional theory based calculations: selected examples. RSC Adv.2013, 3, 13085.10.1039/c3ra40713fSuche in Google Scholar
[35] J. R. B. Gomes, M. N. D. S. Cordeiro, M. Jorge, Gas-phase molecular structure and energetics of anionic silicates. Geochim. Cosmochim. Acta2008, 72, 4421.10.1016/j.gca.2008.06.012Suche in Google Scholar
[36] M. E. Grillo, J. Carrazza, Computational modeling of the nonframework cation location and distribution in microporous titanosilicate ETS-10. J. Phys. Chem.1996, 100, 12261.10.1021/jp953256dSuche in Google Scholar
[37] X. Wang, A. J. Jacobson, Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data. Chem. Commun.1999, 973.10.1039/a901280jSuche in Google Scholar
[38] R. S. Pillai, J. R. B. Gomes, M. Jorge, Molecular simulation of the adsorption of methane in Engelhard titanosilicate frameworks. Langmuir30, 2014, 7435.10.1021/la501554vSuche in Google Scholar PubMed
[39] A. Zecchina, C. Otero Areán, G. Turnes Palomino, F. Geobaldo, C. Lamberti, G. Spoto, S. Bordiga, The vibrational spectroscopy of H2, N2, CO and NO adsorbed on the titanosilicate molecular sieve ETS-10. Phys. Chem. Chem. Phys.1999, 1, 1649.10.1039/a808741eSuche in Google Scholar
[40] C. C. Pavel, B. Zibrowius, E. Löffler, W. Schmidt, On the influence of ion exchange on the local structure of the titanosilicate ETS-10. Phys. Chem. Chem. Phys.2007, 9, 3440.10.1039/b701773aSuche in Google Scholar PubMed
[41] S. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys.1970, 19, 553.10.1080/00268977000101561Suche in Google Scholar
[42] R. S. Pillai, M. Jorge, J. R. B. Gomes, A density functional theory study on the interaction of paraffins, olefins, and acetylenes with Na-ETS-10. Theor. Chem. Acc.2015, 134, 42.10.1007/s00214-015-1642-6Suche in Google Scholar
[43] J. P. Merrick, D. Moran, L. Radom, An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A2007, 111, 11683.10.1021/jp073974nSuche in Google Scholar PubMed
[44] A.-R. Allouche, Gabedit-A graphical user interface for computational chemistry softwares. J. Comp. Chem.2011, 32, 174.10.1002/jcc.21600Suche in Google Scholar PubMed
[45] B. Mihailova, V. Valtchev, S. Mintova, L. Konstantinov, Vibrational spectra of ETS-4 and ETS-10. Zeolites1996, 162, 2.10.1016/0144-2449(95)00098-4Suche in Google Scholar
[46] T. K. Das, A. J. Chandwadkar, A. P. Budhkar, S. Sivasanker, Studies on the synthesis of ETS-10 II. Use of organic templates. Microporous Mater.1996, 5, 401.10.1016/0927-6513(95)00075-5Suche in Google Scholar
[47] X. Yang, J.-L. Paillaud, H. F. W. van Breukelen, H. Kessler, E. Duprey, Synthesis of microporous titanosilicate ETS-10 with TiF4 or TiO2. Microp. Mesopor. Mater.2001, 46, 1.10.1016/S1387-1811(01)00267-0Suche in Google Scholar
[48] S. B. Waghmode, R. Vetrivel, S. G. Hegde, C. S. Gopinath, S. Sivasanker, Physicochemical investigations of the basicity of the cation exchanged ETS-10 molecular sieves. J. Phys. Chem. B2003, 107, 8517.10.1021/jp0278622Suche in Google Scholar
[49] M. Kishima, T. Okubo, Characterization of microporous titanosilicate ETS-10 by infrared spectroscopy with methane as a probe molecule for basic sites. J. Phys. Chem. B2003, 107, 8462.10.1021/jp027424vSuche in Google Scholar
[50] M. Gallo, T. M. Nenoff, M. C. Mitchell, Selectivities for binary mixtures of hydrogen/methane and hydrogen/carbon dioxide in silicalite and ETS-10 by grand canonical Monte Carlo techniques. Fluid Phase Equilib.2006, 247, 135.10.1016/j.fluid.2006.06.014Suche in Google Scholar
[51] F. X. Llabrés i Xamena, A. Zecchina, FTIR spectroscopy of carbon dioxide adsorbed on sodium- and magnesium-exchanged ETS-10 molecular sieves. Phys. Chem. Chem. Phys.2002, 4, 1978.10.1039/b110483gSuche in Google Scholar
[52] Y. K. Krisnandi, R. F. Howe, Effects of ion-exchange on the photoreactivity of ETS-10. Appl. Catal. A Gen.2006, 3076, 2.10.1016/j.apcata.2006.03.008Suche in Google Scholar
[53] NIST Computational Chemistry Comparison and Benchmark Database, Rel. 17b.; Johnson III, R. D., Ed.; The National Institute of Standards and Technology: Gaithersburg. https://cccbdb.nist.gov/.Suche in Google Scholar
Supplementary Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2086).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Modelling crystalline microporous materials
- Natural tilings and free space in zeolites: models, statistics, correlations, prediction
- High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability
- Computational screening of structure directing agents for the synthesis of zeolites. A simplified model
- The steric influence of extra-framework cations on framework flexibility: an LTA case study
- A first principle evaluation of the adsorption mechanism and stability of volatile organic compounds into NaY zeolite
- A DFT study on the interaction of small molecules with alkali metal ion-exchanged ETS-10
- Water in zeolite L and its MOF mimic
- Phonons in deformable microporous crystalline solids
- The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al)
- Understanding the effect of host flexibility on the adsorption of CH4, CO2 and SF6 in porous organic cages
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Modelling crystalline microporous materials
- Natural tilings and free space in zeolites: models, statistics, correlations, prediction
- High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability
- Computational screening of structure directing agents for the synthesis of zeolites. A simplified model
- The steric influence of extra-framework cations on framework flexibility: an LTA case study
- A first principle evaluation of the adsorption mechanism and stability of volatile organic compounds into NaY zeolite
- A DFT study on the interaction of small molecules with alkali metal ion-exchanged ETS-10
- Water in zeolite L and its MOF mimic
- Phonons in deformable microporous crystalline solids
- The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al)
- Understanding the effect of host flexibility on the adsorption of CH4, CO2 and SF6 in porous organic cages