Abstract
Zeolite micropores become more energetically stable by the occlusion of organic structure directing agents (templates). This energetic stabilisation, if approximated by van der Waals zeo-template interactions, can be calculated in a fast way by using modern computing techniques incorporating big data handling algorithms for massive screening. A software suite is presented which calculates an arbitrarily large 2-D matrix (template×zeolite) giving the zeo-template van der Waals interaction energy corresponding to the minimum energy conformation assuming one template molecule in a pure silica zeolite unit cell. With the goal of simplicity, the software only needs two coordinate input files of template and zeolite unit cell. Though a number of approximations have been considered, the software allows to compare, for a given template, which competing zeolite phases may become more stabilised. Applied to zeolite hypothetical databases, it may be of help to suggest templates for their synthesis.
Acknowledgements
We thank Ministerio de Economia y Competitividad (MINECO) of Spain for funding through Projects MAT2015-71842-P and CTQ2015- 70126-R, as well as the excellence programme Severo Ochoa (SEV-2016-0683). G.S. thanks Paco Rosich and Centro de Cálculo de la Universidad Politécnica de Valencia (ASIC-UPV) for the use of their computational facilities.
References
[1] R. M. Barrer, P. J. Denny, Hydrothermal chemistry of silicates. 9. Nitrogenous alumino-silicates. J. Chem. Soc.1961, 971.10.1039/jr9610000971Search in Google Scholar
[2] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R. G. Bell, C. R. A. Catlow, Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev.2015, 44, 7044.10.1039/C5CS00029GSearch in Google Scholar
[3] R. F. Lobo, S. I. Zones, M. E. Davis, Structure-direction in zeolite synthesis. J. Inclus. Phenom. Mol.1995, 21, 47.10.1007/978-94-011-0119-6_2Search in Google Scholar
[4] Y. Kubota, M. M. Helmkamp, S. I. Zones, M. E. Davis, Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Micropor. Mater. 1996, 6, 213.10.1016/0927-6513(96)00002-8Search in Google Scholar
[5] R. G. Bell, D. W. Lewis, P. Voigt, C. M. Freeman, J. M. Thomas, C. R. A. Catlow, Computer modelling of sorbates and templates in microporous materials. Stud. Surf. Sci. Catal. 1994, 84, 2075.10.1016/S0167-2991(08)63768-4Search in Google Scholar
[6] R. Simancas, D. Dari, N. Velamazan, M. T. Navarro, A. Cantin, J. L. Jorda, G. Sastre, A. Corma, F. Rey, New type of organic directing agents constructed by building blocks for the synthesis of zeolites. Science2010, 330, 1219.10.1126/science.1196240Search in Google Scholar
[7] A. Moini, K. D. Schmitt, E. W. Valyocsik, R. F. Polomski, The role of diquaternary cations as directing agents in zeolite synthesis. Zeolites1994, 14, 504.10.1016/S0167-2991(08)64075-6Search in Google Scholar
[8] R. E. Boyett, A. P. Stevens, M. G. Ford, P. A. Cox, A quantitative shape analysis of organic templates employed in zeolite synthesis. Zeolites1996, 17, 508.10.1016/S0144-2449(96)00073-5Search in Google Scholar
[9] D. Wu, S.-J. Hwang, S. I. Zones, A. Navrotsky, Guest-host interactions of a rigid organic molecule in porous silica frameworks. Proc. Natl. Acad. Sci. USA2014, 111, 1720.10.1073/pnas.1323989111Search in Google Scholar
[10] A. W. Burton, S. I. Zones, Organic molecules in zeolite synthesis: Their preparation and structure-directing effects. Stud. Surf. Sci. Catal. 2007, 168, 137.10.1016/S0167-2991(07)80793-2Search in Google Scholar
[11] A. Burton, Recent trends in the synthesis of high-silica zeolites. Catal. Rev. 2018, 60, 132.10.1080/01614940.2017.1389112Search in Google Scholar
[12] M. D. Oleksiak, J. D. Rimer, Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism. Rev. Chem. Eng. 2014, 30, 1.10.1515/revce-2013-0020Search in Google Scholar
[13] K. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, T. Okubo, A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. J. Am. Chem. Soc. 2012, 134, 11542.10.1021/ja3022335Search in Google Scholar PubMed
[14] Y. Kamimura, S. Tanahashi, K. Itabashi, A. Sugawara, T. Wakihara, A. Shimojima, T. Okubo, Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis. J. Phys. Chem. C2011, 115, 744.10.1021/jp1098975Search in Google Scholar
[15] S. Sogukkanli, K. Iyoki, S. P. Elangovan, K. Itabashi, M. Takano, Z. Liu, S. Inagaki, T. Wakihara, Y. Kubota, T. Okubo, Rational seed-directed synthesis of MSE-type zeolites using a simple organic structure-directing agent by extending the composite building unit hypothesis. Microp. Mesopor. Mater. 2017, 245, 1.10.1016/j.micromeso.2017.02.073Search in Google Scholar
[16] R. Pophale, F. Daeyaert, M. W. Deem, Computational prediction of chemically synthesizable organic structure directing agents for zeolites. J. Mater. Chem. A2013, 1, 6750.10.1039/c3ta10626hSearch in Google Scholar
[17] J. E. Schmidt, M. W. Deem, C. Lew, T. M. Davis, Computationally-guided synthesis of the 8-ring zeolite AEI. Top. Catal. 2015, 58, 410.10.1007/s11244-015-0381-1Search in Google Scholar
[18] J. E. Schmidt, M. W. Deem, M. E. Davis, Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents. Angew. Chem. Int. Ed. 2014, 53, 8372.10.1002/anie.201404076Search in Google Scholar PubMed
[19] P. Bai, M. Y. Jeon, L. Ren, C. Knight, M. W. Deem, M. Tsapatsis, J. I. Siepmann, Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modelling. Nat. Commun. 2015, 6, 5912.10.1038/ncomms6912Search in Google Scholar PubMed
[20] T. M. Davis, A. T. Liu, C. M. Lew, D. Xie, A. I. Benin, S. Elomari, S. I. Zones, M. W. Deem, Computationally guided synthesis of SSZ-52: a zeolite for engine exhaust clean-up. Chem. Mater. 2016, 28, 708.10.1021/acs.chemmater.5b04578Search in Google Scholar
[21] A. Jackowski, S. I. Zones, S.-J. Hwang, A. W. Burton, Diquaternary ammonium compounds in zeolite synthesis: cyclic and polycyclic N-heterocycles connected by methylene chains. J. Am. Chem. Soc. 2009, 131, 1092.10.1021/ja806978fSearch in Google Scholar
[22] A. W. Burton, G. S. Lee, S. I. Zones, Phase selectivity in the syntheses of cage-based zeolite structures: an investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modelling. Microp. Mesopor. Mater. 2006, 90, 129.10.1016/j.micromeso.2005.11.022Search in Google Scholar
[23] A. W. Burton, S. I. Zones, S. Elomari, The chemistry of phase selectivity in the synthesis of high-silica zeolites. Curr. Opin. Colloid Interface Sci. 2005, 10, 211.10.1016/j.cocis.2005.08.005Search in Google Scholar
[24] B. Marler, P. Daniels, I. Sane, J. Mune, Synthesis and structure of RUB-35, a disordered material of the EUO-NES-NON family. Microp. Mesopor. Mater. 2003, 64, 185.10.1016/S1387-1811(03)00466-9Search in Google Scholar
[25] J. L. Casci, P. A. Cox, R. P. G. Henney, S. Maberly, M. D. Shannon, Template design for high-silica zeotypes: a case study of zeolite nes synthesis using a designed template. Stud. Surf. Sci. Catal. 2004, 154, 110.10.1016/S0167-2991(04)80790-0Search in Google Scholar
[26] S. I. Zones, A. W. Burton, Diquaternary structure-directing agents built upon charged imidazolium ring centers and their use in synthesis of one-dimensional pore zeolites. J. Mater. Chem. 2005, 15, 4215.10.1039/b500927hSearch in Google Scholar
[27] A. W. Burton, S. I. Zones, T. Rea, I. Y. Chan, Preparation and characterization of SSZ-54: a family of MTT/TON intergrowth materials. Microp. Mesopor. Mater. 2010, 132, 54.10.1016/j.micromeso.2009.10.023Search in Google Scholar
[28] J. Shin, S. B. Hong, N,N,N,N0,N0,N0-hexamethylpentanediammonium-MWW layered precursor: a reaction intermediate in the synthesis of zeolites TNU-9 and EU-1. Microp. Mesopor. Mater. 2009, 124, 227.10.1016/j.micromeso.2009.04.033Search in Google Scholar
[29] Y. Nakagawa, Use of diels-alder derived templates to prepare zeolites with multidimensional pore systems. Stud. Surf. Sci. Catal. 1994, 84, 323.10.1016/S0167-2991(08)64130-0Search in Google Scholar
[30] G. Giordano, J. B. Nagy, E. G. Derouane, Zeolite synthesis in presence of hexamethonium ions. J. Mol. Catal. A2009, 305, 34.10.1016/j.molcata.2008.12.024Search in Google Scholar
[31] S. Zanardi, R. Millini, F. Frigerio, A. Belloni, G. Cruciani, G. Bellussi, A. Carati, C. Rizzo, E. Montanari, ERS-18: a new member of the NON–EUO–NES zeolite family. Microp. Mesopor. Mater. 2011, 143, 6.10.1016/j.micromeso.2011.01.025Search in Google Scholar
[32] S. Smeets, D. Xie, L. B. McCusker, C. Baerlocher, S. I. Zones, J. A. Thompson, H. S. Lacheen, H.-M. Huang, SSZ-45: a high-silica zeolite with small pore openings, large cavities, and unusual adsorption properties. Chem. Mater. 2014, 26, 3909.10.1021/cm501176jSearch in Google Scholar
[33] C. Baerlocher, F. Gramm, L. Massüger, L. B. McCusker, Z. He, S. Hovmöller, X. Zou, Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science2007315, 1113.10.1126/science.1137920Search in Google Scholar
[34] J. L. Schlenker, J. B. Higgins, E. W. Valyocsik, The framework topology of ZSM-57: a new synthetic zeolite. Zeolites1990, 10, 293.10.1016/0144-2449(94)90143-0Search in Google Scholar
[35] E. Galli, G. Gottardi, The crystal structure of stilbite. Miner. Petrogr. Acta1966, 12, 1.Search in Google Scholar
[36] H.-K. Min, S. H. Cha, S. B. Hong, Mechanistic insights into the zeolite-catalyzed isomerization and disproportionation of m-Xylene. ACS Catal. 2012, 2, 971.10.1021/cs300127wSearch in Google Scholar
[37] S. H. Cha, S. B. Hong, Reaction intermediates and mechanism of the zeolite-catalyzed transalkylation of 1,2,4-trimethylbenzene with toluene. J. Catal. 2018, 357, 1.10.1016/j.jcat.2017.10.015Search in Google Scholar
[38] T. Oie, T. M. Maggiora, R. E. Christoffersen, D. Duchamp, Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. Int. J. Quantum Chem. Quantum Biol. Symp. 1981, 8, 1.10.1002/qua.560200703Search in Google Scholar
[39] G. Sastre, Molecular dynamics of hydrocarbons in zeolites: historical perspective and current developments. In Modelling and Simulation in the Science of Micro- and Meso-Porous Materials, (Eds. C. R. A. Catlow, V. Van Speybroeck, and R. A. van Santen) Elsevier, Amsterdam, Chapter 2, 27, 2018.10.1016/B978-0-12-805057-6.00002-8Search in Google Scholar
[40] G. Sastre, A. Cantin, M. J. Diaz-Cabanas, A. Corma, searching organic structure directing agents for the synthesis of specific zeolitic structures: an experimentally tested computational study. Chem. Mater. 2005, 17, 545.10.1021/cm049912gSearch in Google Scholar
[41] R. M. Shayib, N. C. George, R. Seshadri, A. W. Burton, S. I. Zones, B. F. Chmelka, Structure-directing roles and interactions of fluoride and organocations with siliceous zeolite frameworks. J. Am. Chem. Soc. 2011, 133, 18728.10.1021/ja205164uSearch in Google Scholar PubMed
[42] R. H. Archer, S. I. Zones, M. E. Davis, Imidazolium structure directing agents in zeolite synthesis: exploring guest/host relationships in the synthesis of SSZ-70. Microp. Mesopor. Mater. 2010, 130, 255.10.1016/j.micromeso.2009.11.018Search in Google Scholar
[43] M. J. Sabater, G. Sastre, A computational study on the templating ability of the trispyrrolidinium cation in the synthesis of ZSM-18 zeolite. Chem. Mater. 2001, 13, 4520.10.1021/cm0110526Search in Google Scholar
[44] J. E. Schmidt, D. Fu, M. W. Deem, B. M. Weckhuysen, Template–framework interactions in tetraethylammonium-directed zeolite synthesis. angew. Chem. Intern. Ed. 2016, 55, 16044.10.1002/anie.201609053Search in Google Scholar
[45] A. Chawla, R. Li, R. Jain, R. J. Clark, J. G. Sutjianto, J. C. Palmer, J. D. Rimer, Cooperative effects of inorganic and organic structure-directing agents in ZSM-5 crystallization. Mol. Syst. Des. Eng. 2018, 3, 159.10.1039/C7ME00097ASearch in Google Scholar
[46] K. Muraoka, W. Chaikittisilp, Y. Yanaba, T. Yoshikawa, T. Okubo, Directing aluminum atoms into energetically favorable tetrahedral sites in a zeolite framework by using organic structure-directing agents. Angew. Chem. Int. Ed. 2018, 57, 3742.10.1002/anie.201713308Search in Google Scholar
[47] D. W. Lewis, D. J. Willock, C. R. A, Catlow, J. M. Thomas, G. J. Hutchings, De novo design of structure-directing agents for the synthesis of microporous solids. Nature1996, 382, 604.10.1038/382604a0Search in Google Scholar
[48] A. Ghysels, S. L. C. Moors, K. Hemelsoet, K. De Wispelaere, M. Waroquier, G. Sastre, V. Van Speybroeck, Shape-selective diffusion of olefins in 8-ring solid acid microporous zeolites. J. Phys. Chem. C2015, 119, 23721.10.1021/acs.jpcc.5b06010Search in Google Scholar
[49] A. V. Kiselev, A. A. Lopatkin, A. A. Shulga, Molecular statistical calculation of gas adsorption by silicalite. Zeolites1985, 5, 261.10.1016/0144-2449(85)90098-3Search in Google Scholar
[50] C. R. A. Catlow, C. M. Freeman, B. Vessal, S. M. Tomlinson, M. Leslie, Molecular dynamics studies of hydrocarbon diffusion in zeolites. J. Chem. Soc. Faraday Trans. 1991, 87, 1947.10.1039/ft9918701947Search in Google Scholar
[51] C. R. A. Catlow, R. G. Bell, J. D. Gale, Computer modelling as a technique in materials chemistry. J. Mater. Chem. 1994, 4, 781.10.1007/978-94-011-5570-0_7Search in Google Scholar
[52] T. L. M. Maesen, E. Beerdsen, S. Calero, D. Dubbeldam, B. Smit, Understanding cage effects in the n-alkane conversion on zeolites. J. Catal. 2006, 237, 278.10.1016/j.jcat.2005.11.007Search in Google Scholar
[53] J. D. Gale, GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997, 93, 629.10.1039/a606455hSearch in Google Scholar
[54] J. D. Gale, A. L. Rohl, The general utility lattice program (GULP). Mol. Simul. 2003, 29, 291.10.1080/0892702031000104887Search in Google Scholar
[55] C. G. Broyden, The convergence of a class of double-rank minimization algorithms: 2. the new algorithm. IMA J. Appl. Math. 1970, 6, 222.10.1093/imamat/6.3.222Search in Google Scholar
[56] R. Fletcher, A new approach to variable metric algorithms. Comput. J. 1970, 13, 317.10.1093/comjnl/13.3.317Search in Google Scholar
[57] D. Goldfarb, A family of variable metric methods derived by variational means. Math. Comput. 1970, 24, 23.10.1090/S0025-5718-1970-0258249-6Search in Google Scholar
[58] D. F. Shanno, Conditioning quasi-newton methods for function minimization. Math. Comput. 1970, 24, 647.10.1090/S0025-5718-1970-0274029-XSearch in Google Scholar
[59] A. K. Rappe, W. A. Goddard, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Phys. Chem. 1991, 95, 3358.10.1021/ja00051a040Search in Google Scholar
[60] G. Sastre, S. Leiva, M. J. Sabater, I. Gimenez, F. Rey, S. Valencia, A. Corma, Computational and experimental approach to the role of structure-directing agents in the synthesis of zeolites: the case of cyclohexyl alkyl pyrrolidinium salts in the synthesis of β, EU-1, ZSM-11, and ZSM-12 zeolites. J. Phys. Chem. B. 2003, 107, 5432.10.1021/jp027506jSearch in Google Scholar
[61] R. Simancas, M. Hernandez, N. Velamazan, A. Vidal, J. L. Jordá, E. Mugnaioli, T. Blasco, G. Sastre, A. Cantin, M. T. Navarro, P. J. Bereciartua, A. Corma, F. Rey, U. Kolb, Synthesis, structure determination by electron diffraction tomography and tunable catalytic properties of the new zeolite ITQ-45 obtained using phosphorous-containing structure directing agents. 2018, manuscript in preparation.Search in Google Scholar
[62] P. Wagner, Y. Nakagawa, G. S. Lee, M. E. Davis, S. Elomari, R. C. Medrud, S. I. Zones, Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39. J. Am. Chem. Soc. 2000, 122, 263.10.1021/ja990722uSearch in Google Scholar
[63] S. I. Zones, A. W. Burton, G. S. Lee, M. M. Olmstead, A study of piperidinium structure-directing agents in the synthesis of silica molecular sieves under fluoride-based conditions. J. Am. Chem. Soc. 2007, 129, 9066.10.1021/ja0709122Search in Google Scholar
[64] G. Sastre, A computational chemistry insight in the role of structure directing agents in the synthesis of zeolites. Phys. Chem. Chem. Phys. 2007, 9, 1052.10.1039/b615035gSearch in Google Scholar
[65] G. Sastre, A. Pulido, R. Castañeda, A. Corma, Effect of the germanium incorporation in the synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 zeolites. J. Phys. Chem. B2004, 108, 8830.10.1021/jp0378438Search in Google Scholar
[66] M. Moliner, P. Serna, A. Cantín, G. Sastre, M. J. Díaz-Cabanas, A. corma, Synthesis of the ti-silicate form of BEC polymorph of β-zeolite assisted by molecular modeling. J. Phys. Chem. C2008, 112, 19547.10.1021/jp805400uSearch in Google Scholar
[67] T. Lemishko, J. Simancas, M. Hernández-Rodríguez, M. Jiménez-Ruiz, G. Sastre, F. Rey, An INS study of entrapped organic cations within the micropores of zeolite RTH. Phys. Chem. Chem. Phys. 2016, 18, 17244.10.1039/C6CP00971ASearch in Google Scholar
[68] C. Baerlocher, L. B. McCusker, D. H. Olson, Atlas of Zeolite Frameworks Types. 6th revised ed.; Elsevier, Amsterdam, 2007. www.iza-structure.org/database.Search in Google Scholar
[69] G. Giordano, N. Dewaele, Z. Gabelica, J. B. Nagy, A. Nastro, R. Aiello, E. G. Derouane, Factors affecting the crystallization of zeolite ZSM-48. Stud. Surf. Sci. Catal. 1991, 69 C, 157.10.1016/S0167-2991(08)61565-7Search in Google Scholar
[70] G. Giordano, Z. Gabelica, N. Dewaele, J. B. Nagy, E. G. Derouane, Synthesis of zeolite ZSM-48 with different organic and inorganic cations. Stud. Surf. Sci. Catal. 1991, 60 C, 29.10.1016/S0167-2991(08)61881-9Search in Google Scholar
[71] N. Bats, L. Rouleau, J. L. Paillaud, P. Caullet, Y. Mathieu, S. Lacombe, Recent developments in the use of hexamethonium salts as structure directing agents in zeolite synthesis. Stud. Surf. Sci. Catal. 2004, 154 A, 283.10.1016/S0167-2991(04)80813-9Search in Google Scholar
[72] Q. Xu, Y. Gong, W. Xu, J. Xu, F. Deng, T. Dou, Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: a seeded approach for inhibiting ZSM-48. J. Colloid Interface Sci. 2011, 358, 252.10.1016/j.jcis.2011.03.027Search in Google Scholar PubMed
[73] X. Liu, U. Ravon, A. Tuel, Synthesis of all-silica zeolites from highly concentrated gels containing hexamethonium cations. Microp. Mesopor. Mater. 2012, 156, 257.10.1016/j.micromeso.2012.03.001Search in Google Scholar
[74] Y. Zhang, Y. Liu, L. Sun, L. Zhang, J. Xu, F. Deng, Y. Gong, Synthesis of EU-1/ZSM-48 co-crystalline zeolites from high-silica EU-1 seeds: tailoring phase proportions and promoting long crystalline-phase stability. Chem. Eur. J. 2018, 24, 6595.10.1002/chem.201705805Search in Google Scholar
[75] S. I. Zones, M. E. Davis, Zeolite materials: recent discoveries and future prospects. Curr. Opin. Solid State Mater. Sci. 1996, 1, 107.10.1016/S1359-0286(96)80018-0Search in Google Scholar
[76] Y. Xu, M. Ogura, T. Okubo, Hydrothermal synthesis and structure of ASU-14 topological framework by using ethylenediamine as a structure-directing agent. Microp. Mesopor. Mater. 2004, 70, 1.10.1016/j.micromeso.2003.12.015Search in Google Scholar
[77] R. Kawase, A. Iida, Y. Kubota, K. Komura, Y. Sugi, K. Oyama, H. Itoh, Hydrothermal synthesis of calcium and boron containing MFI-type zeolites by using organic amine as structure directing agent. Ind. Eng. Chem. Res. 2007, 46, 1091.10.1021/ie060624zSearch in Google Scholar
[78] Y. Shen, T. T. Le, R. Li, J. D. Rimer, Optimized synthesis of ZSM-11 catalysts using 1,8-diaminooctane as a structure-directing agent. ChemPhysChem. 2018, 19, 529.10.1002/cphc.201700968Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2018-2132).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Modelling crystalline microporous materials
- Natural tilings and free space in zeolites: models, statistics, correlations, prediction
- High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability
- Computational screening of structure directing agents for the synthesis of zeolites. A simplified model
- The steric influence of extra-framework cations on framework flexibility: an LTA case study
- A first principle evaluation of the adsorption mechanism and stability of volatile organic compounds into NaY zeolite
- A DFT study on the interaction of small molecules with alkali metal ion-exchanged ETS-10
- Water in zeolite L and its MOF mimic
- Phonons in deformable microporous crystalline solids
- The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al)
- Understanding the effect of host flexibility on the adsorption of CH4, CO2 and SF6 in porous organic cages
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Modelling crystalline microporous materials
- Natural tilings and free space in zeolites: models, statistics, correlations, prediction
- High-throughput assessment of hypothetical zeolite materials for their synthesizeability and industrial deployability
- Computational screening of structure directing agents for the synthesis of zeolites. A simplified model
- The steric influence of extra-framework cations on framework flexibility: an LTA case study
- A first principle evaluation of the adsorption mechanism and stability of volatile organic compounds into NaY zeolite
- A DFT study on the interaction of small molecules with alkali metal ion-exchanged ETS-10
- Water in zeolite L and its MOF mimic
- Phonons in deformable microporous crystalline solids
- The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al)
- Understanding the effect of host flexibility on the adsorption of CH4, CO2 and SF6 in porous organic cages