Abstract
A ternary borate Na2Hf(BO3)2 has been prepared using a high temperature molten salt method and structurally determined by single crystal X-ray diffraction analysis. It crystallizes in dolomite-type structure with trigonal space group R3̅, and features a layer structure containing [Hf(BO3)2] layers and Na atom layers perpendicular to the c-axis. Band structure calculation using the density functional theory (DFT) method indicates that Na2Hf(BO3)2 has an indirect bond gap of about 4.76 eV. The photoluminescence excitation and emission spectra, decay curve, and the color coordinates of Na2Hf(BO3)2 were investigated. The results show that it can be efficiently excited by UV light (302 nm) and presents blue-green emission (centred at 480 nm), which may be attributed to the lattice defect emission.
Acknowledgements
We are grateful to the Science and Technology Research Project of Henan Province (No. 172102310678), Key research project of Henan Province Office of Education (No. 17A150013) and the open foundation (No. 20160004) of the State Key Laboratory of Structural Chemistry.
References
[1] C.-K. Chang, T.-M. Chen, Sr3B2O6:Ce3+,Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes. Appl. Phys. Lett.2007, 91, 081902.10.1063/1.2772195Search in Google Scholar
[2] T. N. Khamaganova, Structural specific features and properties of alkaline-earth and rare-earth metal borates. Russ. Chem. Bull.2017, 66, 187.10.1007/s11172-017-1719-6Search in Google Scholar
[3] A. Shyichuk, S. Lis, Green-emitting nanoscaled borate phosphors Sr3RE2(BO3)4:Tb3+. Mater. Chem. Phys.2013, 140, 447.10.1016/j.matchemphys.2013.03.019Search in Google Scholar
[4] Z. Zhou, X. Xu, R. Fei, J. Mao, J. Sun, Structure modulations in nonlinear optical (NLO) materials Cs2TB4O9 (T = Ge, Si). Acta Crystallogr. B2016, 72, 194.10.1107/S2052520615019733Search in Google Scholar PubMed
[5] D. Zhao, F.-X. Ma, Y.-C. Fan, L. Zhang, R.-J. Zhang, P.-G. Duan, PbLnB7O13 (Ln = Tb or Eu): a new type of layered polyborate with multi-colour light emission properties. Dalton Trans.2017, 46, 8673.10.1039/C7DT01558ESearch in Google Scholar
[6] D. Zhao, F.-X. Ma, R.-J. Zhang, M. Huang, P.-F. Chen, R.-H. Zhang, W. Wei, Substitution disorder and photoluminescent property of a new rare-earth borate: K3TbB6O12. Z. Kristallogr.2016, 231, 525.10.1515/zkri-2016-1959Search in Google Scholar
[7] D. Zhao, F.-X. Ma, R.-J. Zhang, W. Wei, J. Yang, Y.-J. Li, A new rare-earth borate K3LuB6O12: crystal and electronic structure, and luminescent properties activated by Eu3+. J. Mater. Sci.2017, 28, 129.10.1007/s10854-016-5501-6Search in Google Scholar
[8] J. Y. Si, N. Liu, S. Y. Song, G. M. Cai, N. Yang, Z. Li, Investigation on Eu/Tb activated photoluminescent properties of Li3Sc(BO3)2 based phosphors. J. Alloys Comp.2017, 719, 171.10.1016/j.jallcom.2017.05.161Search in Google Scholar
[9] M. M. Yawalkar, G. B. Nair, G. D. Zade, S. J. Dhoble, Effect of the synthesis route on the luminescence properties of Eu3+ activated Li6M(BO3)3 (M = Y, Gd) phosphors. Mater. Chem. Phys.2017, 189, 136.10.1016/j.matchemphys.2016.12.006Search in Google Scholar
[10] M. Manhas, V. Kumar, V. K. Singh, J. Sharma, R. Prakash, V. Sharma, A. K. Bedyal, H. C. Swart, A novel orange-red emitting Ba2Ca(BO3)2:Sm3+ phosphor to fill the amber gap in LEDs: synthesis, structural and luminescence characterizations. Curr. App. Phys.2017, 17, 1369.10.1016/j.cap.2017.07.015Search in Google Scholar
[11] W. Luo, D. Tu, R. Li, X. Mao, Y. Xu, J. Ren, B. Li, H. Wu, Enhanced reddish-orange emission in NaBa4(BO3)3:Sm3+/Ce3+ phosphors for near-ultraviolet and blue LEDs. J. Mater. Sci.2017, 52, 9764.10.1007/s10853-017-1154-ySearch in Google Scholar
[12] M. M. Yawalkar, G. D. Zade, K. V. Dabre, S. J. Dhoble, Luminescence study of Eu3+ doped Li6Y(BO3)3 phosphor for solid-state lighting. Lumin.2016, 31, 1037.10.1002/bio.3006Search in Google Scholar PubMed
[13] E. Erdogmus, I. Pekgozlu, Synthesis and photoluminescence properties of Dy3+ and Sm3+ doped Li4CaB2O6. Optik2016, 127, 7099.10.1016/j.ijleo.2016.05.067Search in Google Scholar
[14] C. M. Dudhe, S. B. Nagdeote, U. A. Palikundwar, Synthesis and characterization of a novel alkaline earth niobate Ca0.5Sr0.5Nb2O6. J. Alloys Comp.2016, 658, 55.10.1016/j.jallcom.2015.10.220Search in Google Scholar
[15] G. Ju, Y. Hu, L. Chen, Y. Jin, S. Zhang, F. Xue, H. Chen, Self-activated photoluminescence and persistent luminescence in CaZr4(PO4)6. Mater. Res. Bull.2016, 83, 211.10.1016/j.materresbull.2016.06.015Search in Google Scholar
[16] W.-L. Zhang, C.-S. Lin, Z.-Z. He, H. Zhang, Z.-Z. Luo, W.-D. Cheng, Syntheses of three members of AIIMIV(PO4)2: luminescence properties of PbGe(PO4)2 and its Eu3+-doped powders. CrystEngComm2013, 15, 7089.10.1039/c3ce40936hSearch in Google Scholar
[17] Bruker. APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA 2014.Search in Google Scholar
[18] V. Petricek, M. Dusek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[19] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central
[20] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567.10.1524/zkri.220.5.567.65075Search in Google Scholar
[21] Y. Zhang, J. Sun, J. P. Perdew, X. Wu, Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys. Rev. B.2017, 96, 035143.10.1103/PhysRevB.96.035143Search in Google Scholar
[22] V. Milman, K. Refson, S. J. Clark, C. J. Pickard, J. R. Yates, S. P. Gao, P. J. Hasnip, M. I. J. Probert, A. Perlov, M. D. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J. Mol. Struct. Theochem.2010, 954, 22.10.1016/j.theochem.2009.12.040Search in Google Scholar
[23] E. K. Abdel Khalek, E. A. Mohamed, S. M. Salem, F. M. Ebrahim, I. Kashif, Study of glass-nanocomposite and glass-ceramic containing ferroelectric phase. Mater. Chem. Phys.2012, 133, 69.10.1016/j.matchemphys.2011.12.053Search in Google Scholar
[24] A. Akella, D. A. Keszler, Buetschliite derivative K2Zr(BO3)2. Inorg. Chem.1994, 33, 1554.10.1021/ic00085a054Search in Google Scholar
[25] M. Mączka, K. Szymborska-Małek, A. Gągor, A. Majchrowski, Growth and characterization of acentric BaHf(BO3)2 and BaZr(BO3)2. J. Solid State Chem.2015, 225, 330.10.1016/j.jssc.2015.01.008Search in Google Scholar
[26] V. Hornebecq, P. Gravereau, J. P. Chaminade, E. Lebraud, BaZr(BO3)2: a non-centrosymmetric dolomite-type superstructure. Mater. Res. Bull.2002, 37, 2165.10.1016/S0025-5408(02)00899-1Search in Google Scholar
[27] Y. V. Seryotkin, V. V. Bakakin, A. E. Kokh, N. G. Kononova, T. N. Svetlyakova, K. A. Kokh, T. N. Drebushchak, Synthesis and crystal structure of new layered BaNaSc(BO3)2 and BaNaY(BO3)2 orthoborates. J. Solid State Chem.2010, 183, 1200.10.1016/j.jssc.2010.03.005Search in Google Scholar
[28] W. Wong-Ng, C. J. Rawn, Crystallography of functional materials. Crystals2017, 7, 279.10.3390/cryst7090279Search in Google Scholar
[29] J. Zhao, L. Kang, Z. Lin, R. K. Li, Ba1.31Sr3.69(BO3)3Cl: a new structure type in the M5(BO3)3Cl (M = bivalent cation) system. J. Alloys Comp.2017, 699, 136.10.1016/j.jallcom.2016.12.317Search in Google Scholar
[30] K. Bluhm, H. Mueller Buschbaum, Ni5HfB2O10 mit geordneter Metallverteilung. Z. Anorg. Allg. Chem.1989, 575, 26.10.1002/zaac.19895750105Search in Google Scholar
[31] J. S. Knyrim, H. Huppertz, High-pressure synthesis, crystal structure, and properties of the first ternary hafniumborate β-HfB2O5. J. Solid State Chem.2007, 180, 742.10.1016/j.jssc.2006.12.005Search in Google Scholar
[32] Y. Song, M. Luo, D. Zhao, G. Peng, C. Lin, N. Ye, Explorations of new UV nonlinear optical materials in the Na2CO3-CaCO3 system. J. Mater. Chem. C2017, 5, 8758.10.1039/C7TC02789CSearch in Google Scholar
[33] A. Mbarek, Synthesis, structural and optical properties of Eu3+-doped ALnP2O7 (A = Cs, Rb, Tl; Ln = Y, Lu, Tm) pyrophosphates phosphors for solid-state lighting. J. Mol. Struct.2017, 1138, 149.10.1016/j.molstruc.2017.03.010Search in Google Scholar
[34] B. E. Brese, M. O’Keeffe, Bond-Valence parameters for solids. Acta Crystallogr. B1991, 47, 192.10.1107/S0108768190011041Search in Google Scholar
[35] W. M. Wendlandt, H. G. Hecht, Reflectance Spectroscopy, Interscience, New York, 1966.Search in Google Scholar
[36] R. W. Godby, M. Schluther, L. J. Sham, Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B1987, 36, 6497.10.1103/PhysRevB.36.6497Search in Google Scholar PubMed
[37] R. S. Mulliken, Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J. Chem. Phys.1955, 23, 1841.10.1063/1.1740589Search in Google Scholar
[38] Y. Eagleman, M. Weber, S. Derenzo, Luminescence study of oxygen vacancies in lanthanum hafnium oxide, La2Hf2O7. J. Lumin.2013, 137, 93.10.1016/j.jlumin.2012.10.034Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2148).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- A new disodium hafnium borate Na2Hf(BO3)2: synthesis, crystal structure, DFT calculations and luminescent properties
- Crystal structures and Hirshfeld surface analyses of seven 7-aryl-4,7-dioxoheptanoic acids: differing carboxylic acid interactions leading to dimers, chains and three-dimensional arrays
- Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities
- Red photo- and electroluminescent half-lantern cyclometalated dinuclear platinum(II) complex
- Tyrosinase inhibition potency of phthalimide derivatives: crystal structure, Hirshfeld surface analysis and molecular docking studies
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- A new disodium hafnium borate Na2Hf(BO3)2: synthesis, crystal structure, DFT calculations and luminescent properties
- Crystal structures and Hirshfeld surface analyses of seven 7-aryl-4,7-dioxoheptanoic acids: differing carboxylic acid interactions leading to dimers, chains and three-dimensional arrays
- Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities
- Red photo- and electroluminescent half-lantern cyclometalated dinuclear platinum(II) complex
- Tyrosinase inhibition potency of phthalimide derivatives: crystal structure, Hirshfeld surface analysis and molecular docking studies