Crystal structures and Hirshfeld surface analyses of seven 7-aryl-4,7-dioxoheptanoic acids: differing carboxylic acid interactions leading to dimers, chains and three-dimensional arrays
-
Ligia R. Gomes
, John N. Low, Alan B. Turner
, Graeme J.R. Watson , Thomas C. Baddeley and James L. Wardell
Abstract
Crystal structures and Hirshfeld surface analysis are reported of seven aryl-CO–CH2CH2COCH2CH2CO2H derivatives, namely aryl=4-ClC6H4, 1: 2-HOC6H4, 2: (2,4-(MeO)2C6H3, 3: 3,5-Me2-4-MeOC6H2, 4: 4-MeC6H4, 5: C6H5, 6: 2,4-(HO)2C6H3, 7. There are significant differences in their molecular conformations and their crystal packing. Within the group of compounds, three different types of carboxylic acid intermolecular interactions are exhibited, all involving O–H···O hydrogen bonds. These three types are (i) symmetric R22(8) dimers formed from pairs of O–H···O hydrogen bonds in compounds 1–5, (ii) infinite 1D homo-assemblies of carboxylic groups (homo-AA,A catemers), and (iii), a 3-D array, in which there are no direct carboxylic acid–carboxylic acid interactions, generated from O–H···O interactions of each carboxylic acid group with the hydroxyl and carbonyl groups of other molecules in 7. Each of the carboxylic acid groups in the catemer exhibit anti arrangements with all the carboxylic acid oxygen atoms lying in a plane. Disorder is exhibited in the carboxylic acid groups in 2 and 6. With the variety of oxygen substituents present in 1–7, a large number of O–H···O and C–H···O hydrogen bonds are exhibited, resulting in all cases in three dimension assemblies. In 1–5, interlayer contacts between the carboxylic acid R22(8) dimers in rows, with differing sets of weaker C–H···O and/or C–H···π interactions, result in the formation of two-molecular wide columns and/or infinite sheets. While column and sheet sub structures can also be designated in compound 6, on linking the carboxylic acid groups with other substituents via C–H···O, C–H···π and C=O···π interactions, these differ from those in 1–5 due to the different arrangements of the CO2H groups.
Acknowledgments
The authors thank the NCS crystallographic service at the University of UK and the valuable assistance of the staff for the data collection. LRG thanks the Portuguese Foundation for Science and Technology (FCT) UID/Multi/04546/2013 for support. JLW thanks CNPq, Brazil for support.
References
[1] E. A. Kehrer, P Igler, Uber ein einfaches Verfahren zur Darstellung einbasischer 4.7-Diketonsäuren, RCOCH2CH2COCH2CH2COOH. Chem. Ber. 1899, 31, 1176.10.1002/cber.189903201189Search in Google Scholar
[2] E. A. Kehrer, Zur Kenntniss der Phenacyllävulin- [Phenheptandion·(4.7)-]säure-(1) und über eine neue Carbonsäure C13H13O2N der Pyrrolgruppe. Chem. Ber.1901, 34, 1263.10.1002/cber.190103401207Search in Google Scholar
[3] R. Robinson, Experiments on the synthesis of substances related to the sterols. Part XXI. A new synthesis of derivatives of ketocyclopentenophenanthrene. J. Chem. Soc. 1938, 1390.10.1039/jr9380001390Search in Google Scholar
[4] R. Robinson, W. M. Todd, p-Phenylfurylethylamine and analogous derivatives of thiophen and pyrrole. J. Chem. Soc. 1939, 1743.10.1039/JR9390001743Search in Google Scholar
[5] D. L. Turner, Some aryl substituted cyclopentenones: a new synthesis of the cyclopentenophenanthrene structure. J. Am. Chem. Soc. 1949, 71, 612.10.1021/ja01170a064Search in Google Scholar PubMed
[6] W. Short, G. M. Rockwood, Synthesis and interconversion of 6-aroyl-4-oxohexanoic acids and 5-Aryl-2-furanpropionic acids. Antiinflammatory agents. J. Heterocycl. Chem. 1969, 6, 713.10.1002/jhet.5570060519Search in Google Scholar
[7] V. M. Kapoor, A. M. Mehta, Steroid intermediates. synthesis and transformations of 7-Aryl-4,7-dioxoheptanoic acids. J. Chem. Soc. Perkin Trans 11973, 2420.10.1039/p19730002420Search in Google Scholar
[8] L. J. Chinn, K. W. Salamon, Synthesis of 9-deoxy-11-oxoprostaglandins. Selective reduction of an 11,15-Dione. J. Org. Chem. 1979, 44, 168.10.1021/jo01316a002Search in Google Scholar
[9] G. E. Veitch, K. L. Bridgwood, K. Rands-Trevor, S. V. Ley, Magnesium nitride as a convenient source of ammonia: preparation of pyrroles. Synlett2008, 2597.10.1055/s-0028-1083504Search in Google Scholar
[10] J. Yoo, J. H. Kim, K. D. Robertson, J. L. Medina-Franco, Molecular modeling of inhibitors of Human DNA methyltransferase with a crystal structure: discovery of a novel DNMT1 inhibitor. Adv. Protein Chem. Struct. Biol. 2012, 87, 219.10.1016/B978-0-12-398312-1.00008-1Search in Google Scholar PubMed PubMed Central
[11] D. Kuck, N. Singh, F. Lyko, J. L. Medina-Franco, Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg. Med. Chem. 2010, 18, 822.10.1016/j.bmc.2009.11.050Search in Google Scholar PubMed
[12] L. Nahar, A. B. Turner, S. D. Sarker, Synthesis of hydroxy acids of dinorcholane and 5 beta-cholane. J. Braz. Chem. Soc. 2009, 20, 88.10.1590/S0103-50532009000100015Search in Google Scholar
[13] L. Nahar, S. D. Sarker, A. B. Turner, Convenient synthesis of new pregnenolone oximinyl oxalate dimers. Chem. Nat. Comp. 2008, 44, 315.10.1007/s10600-008-9051-xSearch in Google Scholar
[14] W. Zhuang, C.-F. Ju, X.-Q. Zhang, J. Xiao, K. Wang, Synthesis, characterization and crystal structure of 4,7-dioxo-7-phenylheptanoic acid. Asian J. Chem.2014, 26, 3116.10.14233/ajchem.2014.17199Search in Google Scholar
[15] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, B. Kahr, Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: pentamorphic 1,8-dihydroxyanthraquinone. Cryst. Growth Des.2008, 8, 4517.10.1021/cg8005212Search in Google Scholar
[16] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. 2009, D65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central
[17] S. K. Wolff, D. I. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal explorer, The University of Western Australia, Nedlands, Western Australia, 2012.Search in Google Scholar
[18] L. D’Ascenzo, P. Auffinger, A comprehensive classification and nomenclature of carboxyl–carboxyl(ate) supramolecular motifs and related catemers: implications for biomolecular systems. Acta Crystallogr. 2015, B71, 164.10.1107/S205252061500270XSearch in Google Scholar PubMed PubMed Central
[19] O. Ivasenko, D. F. Perepichka, Mastering fundamentals of supramolecular design with carboxylic acids, Common lessons from X-ray crystallography and scanning tunneling Microscopy. Chem. Soc. Rev. 2011, 40, 191.10.1039/C0CS00022ASearch in Google Scholar PubMed
[20] L. Leiserowitz, Molecular packing modes. Carboxylic acids. Acta Crystallogr. 1976, B32, 775.10.1107/S0567740876003968Search in Google Scholar
[21] F. H. Allen, The Cambridge structural database: a quarter of a million crystal structures and rising. Acta Crystallogr. 2002, B58, 380.10.1107/S0108768102003890Search in Google Scholar PubMed
[22] J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.10.1002/anie.199515551Search in Google Scholar
[23] R. E. Jones, D. H. Templeton, The crystal structure of acetic acid. Acta Crystallogr. 1958, 11, 483.10.1107/S0365110X58001341Search in Google Scholar
[24] F. J. Strieter, D. H. Templeton, R. F. Scheuerman, R. L. Sass, The crystal structure of propionic acid. Acta Crystallogr.1962, 15, 1233.10.1107/S0365110X62003278Search in Google Scholar
[25] A. D. Bond, On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J. Chem. 2004, 28, 104.10.1039/B307208HSearch in Google Scholar
[26] CrysAlis PRO 1.171.38.43, Rigaku Oxford Diffraction, 2015.Search in Google Scholar
[27] CrystalClear-SM Expert 2.1 b29 Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, Texas, 2013.Search in Google Scholar
[28] CrysAlis PRO 1.171.39.30d, Rigaku Oxford Diffraction, 2017.Search in Google Scholar
[29] P. McArdle, K. Gilligan, D. Cunningham, R. Dark, M. Mahon, A method for the prediction of the crystal structure of ionic organic compounds – the crystal structures of o-toluidinium chloride and bromide and polymorphism of bicifadine hydrochloride. CrystEngComm. 2004, 6, 303.10.1039/B407861FSearch in Google Scholar
[30] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Crystallogr. 2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
[31] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr.2011, 44, 1281.10.1107/S0108767319098143Search in Google Scholar
[32] G. M. Sheldrick, Crystal structure refinement with SHELXL7. Acta Crystallogr. 2015, C71, 3.10.1107/S2053229614024218Search in Google Scholar
[33] G. M. Sheldrick, SHELXL2017/1, 2017. Programs for crystal structure determination, Universität Göttingen, Germany, 2017.Search in Google Scholar
[34] MERCURY 3. 9: The Cambridge Crystallographic Data Centre (CCDC), 2017: https://www.ccdc.cam.ac.uk/Community/csd-community/freemercury.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2144).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- A new disodium hafnium borate Na2Hf(BO3)2: synthesis, crystal structure, DFT calculations and luminescent properties
- Crystal structures and Hirshfeld surface analyses of seven 7-aryl-4,7-dioxoheptanoic acids: differing carboxylic acid interactions leading to dimers, chains and three-dimensional arrays
- Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities
- Red photo- and electroluminescent half-lantern cyclometalated dinuclear platinum(II) complex
- Tyrosinase inhibition potency of phthalimide derivatives: crystal structure, Hirshfeld surface analysis and molecular docking studies
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- A new disodium hafnium borate Na2Hf(BO3)2: synthesis, crystal structure, DFT calculations and luminescent properties
- Crystal structures and Hirshfeld surface analyses of seven 7-aryl-4,7-dioxoheptanoic acids: differing carboxylic acid interactions leading to dimers, chains and three-dimensional arrays
- Molecular arrangements in crystals of racemic and enantiopure forms of N-carbamoyl-2-phenylbutyramide and 2-phenylbutyramide: differences and similarities
- Red photo- and electroluminescent half-lantern cyclometalated dinuclear platinum(II) complex
- Tyrosinase inhibition potency of phthalimide derivatives: crystal structure, Hirshfeld surface analysis and molecular docking studies