Two superstructures of Ce3Rh4Ge4
-
Daniel Voßwinkel
Abstract
Two different samples of Ce3Rh4Ge4 were synthesized from different starting compositions by melting of the elements in an arc-melting furnace followed by annealing sequences in a sealed tantalum ampoule in a muffle furnace. The structures of two different stacking variants were refined on the basis of temperature dependent single-crystal X-ray diffractometer data. At high temperature Ce3Rh4Ge4 adopts the U3Ni4Si4 type structure with strongly enhanced anisotropic displacement parameters for the Rh1 atoms. For the two different crystals, additional reflections start to appear at different temperatures. The first crystal showed additional reflections already at room temperature (stacking variant I) and the second one showed additional reflections emerging below 270 K (stacking variant II). Stacking variant I could be described with the (3+1)D superspace group I2/m(α0γ)00; α=1/2a*, γ=1/2c*; (Z=2), 1252 F2 values, 48 variables, wR=0.0306 for the main and wR=0.0527 for 440 1st order satellite reflections, similar to Pr3Rh4Ge4. For stacking variant II the (3+1)D superspace group is Immm(α00)00s; α=1/2a*; (Z=2). The structure could be refined with 1261 F2 values, 53 variables and residuals of wR=0.0331 for the main reflections and wR=0.1755 (R1obs=0.0788) for the 1st order satellite reflections, [a=406.2(1), b=423.7(1) and c=2497.1(1) pm]. The commensurate description could be transformed to a three-dimensional (3D) supercell with space group Pnma and Z=4: a=812.5(1), b=423.7(1), c=2497.1(2) pm, 1261 F2 values, 69 variables and wR=0.0525. The relation of the U3Ni4Si4 type structure, the (3+1)D modulated and the 3D supercells are discussed on the basis of group-subgroup schemes. Ab initio electronic structure calculations are in line with the diffraction experiments, revealing the lowest total energy for the Pnma phase.
Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dipl.-Ing. U. Ch. Rodewald for intensity data collections. Computational facilities provided by the MCIA-University of Bordeaux and support from CNRS and Conseil Régional d’Aquitaine are acknowledged.
References
[1] Ya. P. Yarmolyuk, L. G. Aksel’rud, Yu. N. Grin, V. S. Fundamenskii, E. I. Gladyshevskii, Sov. Phys. Crystallogr. 1979, 24, 332.Suche in Google Scholar
[2] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edition, Springer, Berlin 1993.10.1007/978-3-662-10641-9Suche in Google Scholar
[3] O. I. Bodak, M. G. Mis’kiv, A. T. Tyvanchuk, O. I. Kharchenko, E. I. Gladyshevskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 1973, 9, 864.Suche in Google Scholar
[4] E. Hovestreydt, K. Klepp, E. Parthé, Acta Crystallogr. B1982, 38, 1803.10.1107/S0567740882007249Suche in Google Scholar
[5] V. A. Bruskov, O. I. Bodak, V. K. Pecharskii, Izv. Akad. Nauk SSSR Neorg. Mater. 1986, 22, 1573.Suche in Google Scholar
[6] M. F. Fedyna, V. K. Pecharskii, O. I. Bodak, Izv. Akad. Nauk SSSR Neorg. Mater. 1987, 23, 504.Suche in Google Scholar
[7] P. Rogl, B. Chevalier, J. Etourneau, J. Solid State Chem. 1990, 88, 429.10.1016/0022-4596(90)90238-SSuche in Google Scholar
[8] D. Kaczorowski, H. Noël, M. Potel, Physica B1995, 206&207, 457.10.1016/0921-4526(94)00489-ISuche in Google Scholar
[9] P. Salamakha, M. Konyk, O. Sologub, O. Bodak, J. Alloys Comp. 1996, 236, 206.10.1016/0925-8388(95)02081-0Suche in Google Scholar
[10] M. N. Norlidah, G. Venturini, B. Malaman, J. Alloys Comp. 1998, 267, 182.10.1016/S0925-8388(97)00543-4Suche in Google Scholar
[11] H. Fujii, T. Mochiku, H. Takeya, A. Sato, Phys. Rev. B2005, 72, 214520.10.1103/PhysRevB.72.214520Suche in Google Scholar
[12] H. Fujii, J. Phys.: Condens. Matter2006, 18, 8037.Suche in Google Scholar
[13] T. Mochiku, H. Fujii, H. Takeya, T. Wuernisha, K. Mori, T. Ishigaki, T. Kamiyama, K. Hirata, Physica C2007, 463–465, 182.10.1016/j.physc.2007.04.326Suche in Google Scholar
[14] S. Kasahara, H. Fujii, T. Mochiku, H. Takeya, K. Hirata, Physica B2008, 403, 1119.10.1016/j.physb.2007.10.347Suche in Google Scholar
[15] A. Lipatov, A. Gribanov, A. Grytsiv, P. Rogl, E. Murashova, Yu. Seropegin, G. Giester, K. Kalmykov, J. Solid State Chem. 2009, 182, 2497.10.1016/j.jssc.2009.06.022Suche in Google Scholar
[16] A. Lipatov, A. Gribanov, A. Grytsiv, S. Safronov, P. Rogl, J. Rousnyak, Yu. Seropegin, G. Giester, J. Solid State Chem. 2010, 183, 829.10.1016/j.jssc.2010.01.029Suche in Google Scholar
[17] D. Voßwinkel, R.-D. Hoffmann, M. Greiwe, M. Eul, R. Pöttgen, Z. Kristallogr. 2016, 231, 641.10.1515/zkri-2016-1992Suche in Google Scholar
[18] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Suche in Google Scholar
[19] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Suche in Google Scholar
[20] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Hausermann, High Press. Res.1996, 14, 235.10.1080/08957959608201408Suche in Google Scholar
[21] V. Dyadkin, P. Pattison, V. Dmitriev, D. Chernyshov, J. Synchrotron Rad.2016, 23, 825.10.1107/S1600577516002411Suche in Google Scholar PubMed
[22] J. Rodriguez-Carvajal, IUCr Newsl. 2001, 26, 12.10.1023/A:1005225129295Suche in Google Scholar
[23] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.10.1103/PhysRev.136.B864Suche in Google Scholar
[24] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.10.1103/PhysRev.140.A1133Suche in Google Scholar
[25] G. Kresse, J. Furthmüller, Phys. Rev. B1996, 54, 11169.10.1103/PhysRevB.54.11169Suche in Google Scholar
[26] G. Kresse, D. Joubert, Phys. Rev. B1999, 59, 1758.10.1103/PhysRevB.59.1758Suche in Google Scholar
[27] P. E. Blöchl, Phys. Rev. B1994, 50, 17953.10.1103/PhysRevB.50.17953Suche in Google Scholar
[28] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed
[29] S. F. Matar, Progr. Solid State Chem. 2013, 41, 55.10.1016/j.progsolidstchem.2013.03.001Suche in Google Scholar
[30] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397.10.1063/1.458517Suche in Google Scholar
[31] A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, H. G. von Schnering, Angew. Chem. Int. Ed. Engl. 1992, 31, 187.10.1002/anie.199201871Suche in Google Scholar
[32] R. F. W. Bader, Chem. Rev. 1991, 91, 893.10.1021/cr00005a013Suche in Google Scholar
[33] L. Palatinus, Acta Crystallogr. B2013, 69, 1.10.1107/S2052519212051366Suche in Google Scholar
[34] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 786.10.1107/S0021889807029238Suche in Google Scholar
[35] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar
[36] H. Bärnighausen, Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar
[37] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Suche in Google Scholar
[38] U. Müller, Relating Crystal Structures by Group-subgroup Relations, in: (Eds. H. Wondratschek and U. Müller) International Tables for Crystallography, Vol. A1, Symmetry relations between space groups, John Wiley & sons, Ltd, 2nd Ed., Chichester 2010, p. 44.10.1107/97809553602060000795Suche in Google Scholar
[39] U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Vieweg + Teubner Verlag, Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar
[40] O. Niehaus, R.-D. Hoffmann, S. Tencé, B. Chevalier, R. Pöttgen, Z. Kristallogr. 2015, 230, 579.10.1515/zkri-2015-1856Suche in Google Scholar
[41] O. Niehaus, R.-D. Hoffmann, B. Chevalier, R. Pöttgen, Z. Kristallogr. 2016, 231, 143.10.1515/zkri-2015-1882Suche in Google Scholar
[42] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2016/17), ASM International®, Materials Park, Ohio (USA) 2016.Suche in Google Scholar
[43] J. Emsley, The Elements, Oxford University Press, Oxford 1999.Suche in Google Scholar
[44] V. Svitlyk, W. Hermes, B. Chevalier, S. F. Matar, E. Gaudin, D. Voßwinkel, D. Chernyshov, R.-D. Hoffmann, R. Pöttgen, Solid State Sci. 2013, 21, 6.10.1016/j.solidstatesciences.2013.04.002Suche in Google Scholar
[45] S. F. Matar, E. Gaudin, B. Chevalier, R. Pöttgen, Solid State Sci. 2007, 9, 274.10.1016/j.solidstatesciences.2006.12.006Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Syntheses, crystal structures and photoluminescence properties of two rare-earth molybdates CsLn(MoO4)2 (Ln=Eu, Tb)
- Two superstructures of Ce3Rh4Ge4
- Organic and Metalorganic Crystal Structures
- Organic-inorganic hybrid materials from divalent metal cations and expanded N,N′-donor linkers
- Crystallographic and docking (Cathepsins B, K, L and S) studies on bioactive halotelluroxetanes
- Radical scavenging potency of 2-(benzofuran-2-yl)-2-oxoethyl 3-(methyl/amino)benzoate: synthesis, crystal structure and Hirshfeld surface analysis
- Crystal structures and Hirshfeld surface analyses of halogen substituted azine derivatives, 1,4-bis(halophenyl)-2,3-diazabuta-1,3-dienes
- Proton-transfer compounds featuring the unusual 4-arsonoanilinium cation from the reaction of (4-aminophenyl)arsonic acid with strong organic acids
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Syntheses, crystal structures and photoluminescence properties of two rare-earth molybdates CsLn(MoO4)2 (Ln=Eu, Tb)
- Two superstructures of Ce3Rh4Ge4
- Organic and Metalorganic Crystal Structures
- Organic-inorganic hybrid materials from divalent metal cations and expanded N,N′-donor linkers
- Crystallographic and docking (Cathepsins B, K, L and S) studies on bioactive halotelluroxetanes
- Radical scavenging potency of 2-(benzofuran-2-yl)-2-oxoethyl 3-(methyl/amino)benzoate: synthesis, crystal structure and Hirshfeld surface analysis
- Crystal structures and Hirshfeld surface analyses of halogen substituted azine derivatives, 1,4-bis(halophenyl)-2,3-diazabuta-1,3-dienes
- Proton-transfer compounds featuring the unusual 4-arsonoanilinium cation from the reaction of (4-aminophenyl)arsonic acid with strong organic acids