Home Crystal structures and Hirshfeld surface analyses of halogen substituted azine derivatives, 1,4-bis(halophenyl)-2,3-diazabuta-1,3-dienes
Article
Licensed
Unlicensed Requires Authentication

Crystal structures and Hirshfeld surface analyses of halogen substituted azine derivatives, 1,4-bis(halophenyl)-2,3-diazabuta-1,3-dienes

  • Nathasha R. de L Correira , Thais C.M. Noguiera , Alessandra C. Pinheiro , Marcus V.N. de Souza , Ligia R. Gomes , John N. Low , James L. Wardell EMAIL logo and Solange M.S.V. Wardell
Published/Copyright: October 18, 2017

Abstract

The crystal structures and Hirshfeld surface analyses are reported, from data collected at 100 K, of six 1,4-bis(X,Y-phenyl)-2,3-diazabuta-1,3-dienes (1–6), namely (1: X, Y=H, 4-Cl; 2: X, Y=3,4-Cl2; 3: X, Y=2,4-Cl2; 4: X, Y=H, 2-Br, H; 5: X, Y=H, 3-Br; 6: X, Y=H, 4-Br. The six halogen derivatives crystallise in the monoclinic group P21/c. In each case, the asymmetric unit is one half of the molecule, with the molecules lying across inversion centres, midway between the N–N bonds, with the central C–C=N–N=C–C fragments having all transoid conformations. Each of the six molecules deviates a little from overall planarity. The π···π stacking interactions are the most important intermolecular interactions in each of the six compounds. In the cases of 3 and 4, the π···π stacks are augmented by additional C–X···π (X=Cl or Br) interactions, while in 4, the π···π stacks are linked by weak Br···Br interactions, and in 3, weak Cl···Cl contacts are considered to be also involved in cementing the supra molecular arrangements. The short separations of the layers within the stacks and the extent of the overlaps of the π systems point to significant strengths of the π···π interactions. Comparisons with published structures of related chloro and fluoro compounds indicated similar results: related iodo derivatives, IC6H4CH=N–N=CHC6H4I do not possess as strong π···π interactions. The Hirshfeld analysis indicated further intermolecular contacts which fell outside the normal PLATON cutoff values.

Acknowledgments

The authors thank the National Crystallographic Service, University of Southampton for the data collection, and for their help and advice. This work was supported by the Portuguese Foundation for Science and Technology (FCT) UID/Multi/04546/2013, and by CAPES (Brazil).

References

[1] J. Safari, S. Gandomi-Ravandi, Structure, synthesis and application of azines: a historical perspective. RSC Adv.2014, 4, 46224.10.1039/C4RA04870ASearch in Google Scholar

[2] V. Arun, K. R. Sankaran, Characterization and computational analysis of unsymmetrical azines. Can. Chem. Trans.2015, 3, 319.10.13179/canchemtrans.2015.03.02.0224Search in Google Scholar

[3] Y. Wan, Q. Li, Light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater.2012, 24, 1926.10.1002/adma.201200241Search in Google Scholar PubMed

[4] J.-L.Yang, J. Rui, X. Xu, Y.-Q. Yang, J. Su, H.-J. Xu, Y.-Y. Wang, N. Sun, S. Wang, Fluorescence staining of salicylaldehyde azine, and applications in the determination of potassium tert-butoxide. RSC Adv.2016, 6, 30636.10.1039/C6RA01035KSearch in Google Scholar

[5] E. Serdiuk, A. D. Roshal, Exploring double proton transfer: a review on photochemical features of compounds with two proton-transfer sites. Dyes Pigments2017, 138, 223.10.1016/j.dyepig.2016.11.028Search in Google Scholar

[6] E. Liu, Y. Z. Zhang, J.-W. Tan, C.-X. Yang, L. Li, J. A. Golen, A. L. Rheingold, G.-Q, Zhang, Zn(II) and Co(III) metallosupramolecular assemblies derived from a rigid bis-Schiff base ligand. Polyhedron2015, 102, 41.10.1016/j.poly.2015.07.074Search in Google Scholar

[7] B. Bhattacharya, D. K. Maity, R. Mondal, E. Colacio, D. Ghoshal, Two series of isostructural coordination polymers with isomeric benzenedicarboxylates and different azine based N,N′-donor ligands: syntheses, characterization and magnetic properties. Cryst. Growth Des. 2015, 15, 4427.10.1021/acs.cgd.5b00741Search in Google Scholar

[8] J. Zhou, S.-F. Dong, Y.-F. Qiao, L. Du, T. Yan, M.-J. Xie, Q.-H. Zhao, Assembly and properties of four intriguing one-dimensional coordination polymers with 1,4-bis(3- or 4-pyridyl)-2,3-diaza-1,3-butadiene ligands: effect of central metal ions on the structures. Chin. J. Inorg. Chem.2015, 31, 2095.Search in Google Scholar

[9] J. Calahorro, E. San Sebastián, A. Salinas-Castill, J. M. Seco, C. Mendicute-Fierro, B. Fernández, A. Rodríguez-Diéguez, Effect of pi-pi stacking interactions on the emission properties of cadmium metal-organic frameworks based on 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene. CrystEngComm.2015, 17, 3659.10.1039/C5CE00010FSearch in Google Scholar

[10] E. M. Afsah, S. S. Elmorsy, S. M. Abdelmageed, Z. E. Zaki, Synthesis of some new mixed azines, Schiff and Mannich bases of pharmaceutical interest related to isatin. Z. Naturforsch. Sect. B- J. Chem. Res.2015, 70, 393.10.1515/znb-2014-0262Search in Google Scholar

[11] T. Stringer, H. Guzgay, J. M. Combrinck, M. Hopper, D. T. Hendricks, P. J. Smith, K. M. Land, T. J. Egan, G. S. Smith, Synthesis, characterization and pharmacological evaluation of ferrocenyl azines and their rhodium(I) complexes. J. Organomet. Chem.2015, 788, 1.10.1016/j.jorganchem.2015.04.009Search in Google Scholar

[12] H. Gul, U. Calis, J. Vepsalainen, Synthesis of some mono-Mannich bases and corresponding azine derivatives and evaluation of their anticonvulsant activity. Arzneimittel-Forschung-Drug Res.2004, 54, 359.10.1055/s-0031-1296984Search in Google Scholar

[13] I. Alkorta, F. Blanco, J. Elguero, Computational studies of the structure of aldazines and ketazines. Part 1. Simple compounds, ARKIVOC2008, 48.10.3998/ark.5550190.0009.706Search in Google Scholar

[14] S. Tighadouini, S. Radi, L. Toupet, M. Sirajuddin, T. Ben Hadda, M. Akkurt, I. Warad, Y. N. Mabkhot, S. Ali, Origin and switch of different colors: thermo-isomerism and crystal structure of (1E,2E)-bis[1-(4-nitrophenyl)ethylidene] hydrazine. J. Chem. Sci.2015, 127, 2211.10.1007/s12039-015-0992-xSearch in Google Scholar

[15] P. Vijaya, K. R. Sankaran, A combined experimental and DFT study of a novel unsymmetrical azine 2-(4-methoxybenzylidene)-1-(1-(4-isobutylphenyl) ethylidene)hydrazine. Spectrochimic Acta. Part A 2015, 138, 460.10.1016/j.saa.2014.11.047Search in Google Scholar PubMed

[16] A. Özel, K. Karaoğlu, K. Serbest, N. Gürcan, M. Emirik. U. Çoruh, Spectroscopic, electrochemical, theoretical characterization and biological evaluation of a ferrocenyl-substituted unsymmetric azine ligand and its Cu(II) complex. J Coord. Chem.2016, 69, 1587.10.1080/00958972.2016.1178387Search in Google Scholar

[17] N. Subramanian, N. Sundaraganesan, J. Jayabharathi, Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method. 2010, 76, 259.10.1016/j.saa.2010.03.033Search in Google Scholar PubMed

[18] V. Pintos, A. Cuevas, S. Onetto, G. Seoane, P. A. Denis, J. S. Gancheff, R. Faccio, A. W. Mombrú, C. Kremer, Structural and theortical studies of (E,E)-benzaldehyde azine and its rhenium(IV) complex. J. Mol. Struct.2010, 963, 9.10.1016/j.molstruc.2009.09.028Search in Google Scholar

[19] J. Lasri, N. E. Eltayeb, A. I. Ismail, Experimental and theoretical study of crystal and molecular structure of 1,2-di(9H-fluoren-9-ylidene)hydrazine. J. Mol. Struct.2016, 1121, 35.10.1016/j.molstruc.2016.05.044Search in Google Scholar

[20] T. G. D. van Schalkwyk, A. M. Stephen, Structural correlations among aromatic azine derivatives. ARKIVOC2005, 109.10.3998/ark.5550190.0006.d10Search in Google Scholar

[21] C. R. Ojala, W. H. Ojala, D. Britton, CSD Communication, GAVCEM02, 2007.Search in Google Scholar

[22] P.-W. Zheng, W. Wang, X.-M. Duan, Acta Crystallogr.2005, E61, o3020.10.1107/S1600536805026279Search in Google Scholar

[23] R. Glaser, R. F. Murphy, Y. Sui, C. L. Barnes, S. H. Kim, Multifurcated halogen bonding involving Ph–Cl···H–CPh=N–R′ interactions and its relation to idioteloamphiphile layer architecture. CrystEngComm2006, 8, 372.10.1039/B601467DSearch in Google Scholar

[24] M.-H. Yang, Y.-F. Zheng, Redetermination of 1,2-bis(2-bromobenzylidene)hydrazine. Acta Cryst.2007, E63, o4732.10.1107/S1600536807057911Search in Google Scholar

[25] L. Wang, Q. Su, Q. Wu, W. Gao, Y. Mu, Synthesis of new substituted benzaldazine derivatives, hydrogen bonding-induced supramolecular structures and luminescent properties, Compt. Rend Chim.2012, 15, 463.10.1016/j.crci.2011.12.006Search in Google Scholar

[26] C. R. Ojala, W. H. Ojala, D. Britton, CSD Communication, 2007, BRBZAL01.Search in Google Scholar

[27] J. Marignan, J. L. Galigné, J. Falgueirettes, Structure cristalline et moléculaire de la p,p’-dibromobenzalazine. Acta Crystallogr.1972, B28, 93.10.1107/S0567740872001906Search in Google Scholar

[28] C. Glidewell, J. N. Low, J. M. S. Skakle, J. L. Wardell, Supramolecular structures of three isomeric (E,E)-1-(2-iodophenyl)-4-(nitrophenyl)-2,3-diaza-1,3-butadienes: changes in intermolecular interactions consequent upon changes of substituent location. Acta Crystallogr.2005, C61, o-312.10.1107/S0108270105009248Search in Google Scholar PubMed

[29] J. N. Low, J. M. S. Skakle, J. L. Wardell, C. Glidewell, (E,E)-1-(3-Iodophenyl)-4-(3-nitrophenyl)-2,3-diaza-1,3-butadiene. Acta Crystallogr.2006, E62, o-1399.Search in Google Scholar

[30] C. Glidewell, J. N. Low, J. M. S. Skakle, J. L. Wardell, Isomers and polymorphs of (E,E)-1,4-bis(nitrophenyl)-2,3-diaza-1,3-butadienes. Acta Crystallogr.2006, B62, 666.10.1107/S010876810601439XSearch in Google Scholar PubMed

[31] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr.2009, D65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central

[32] R. A. Howie, J. L. Wardell, CSD Communication, 2014, CCDC 700725 SITBUT01.Search in Google Scholar

[33] P.-W. Zheng, Q.-M. Qiu, Y.-Y. Lin, K.-F. Liu, N,N′-Bis(2,6-dichlorobenzylidene)hydrazine. Acta Crystallogr.2006, E62, o1913.10.1107/S1600536806012918Search in Google Scholar

[34] J. L. Wardell, J. N. Low, C. Glidewell, (E,E)-1,4-Bis(2-iodophenyl)-2,3-diaza-1,3-butadiene. Acta Crystallogr.2006, E62, o1565.10.1107/S1600536806010385Search in Google Scholar

[35] C. R. Ojala, W. H. Ojala, D. Britton, C. J. Cramer, Three polymorphs of 4-4′-diiodo-benzalazine, and 4-chloro-4′-iodobenzalazine. Acta Crystallogr.2007, C63, o518.10.1107/S0108270107034786Search in Google Scholar

[36] M. Odabasoglu, O. Buyukgungor, K. Sunil, B. Narayana, 4-Fluorobenzaldehyde [(E)-4-fluorobenzylidene]hydrazone. Acta Crystallogr.2007, E63, o4145.10.1107/S1600536807045989Search in Google Scholar

[37] B. Lee, K. H. Lee, J. Cho, W. Nam, N. H. Hur, Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones. Org. Lett.2011, 13, 6386.10.1021/ol202593gSearch in Google Scholar PubMed

[38] M. K. Khan, W. Jamil, N. Ambreen, M. Taha, S. Perveen, G. A. Morales, An expeditious synthetic approach towards the synthesis of bis-Schiff bases (aldazines) using ultrasound. Ultrason. Sonochem.2014, 21, 1200.10.1016/j.ultsonch.2013.12.011Search in Google Scholar PubMed

[39] H.-Z. Jhang, Z.-J. Reng, W. Wan, L.-G. Shi, An improved synthesis of azines under solvent-free conditions. J. Shanghai Univ.2005, 9, 369.10.1007/s11741-005-0055-5Search in Google Scholar

[40] B. M. Bogoslovskii, T. I. Yakouenko, Issledovanie V Oblasti benzalazina i ego proizvodnykh. 1. Deistvie khloristogo vodoroda na benzalazin i ego proizvodnye. Zh. Obshch. Khim.1957, 27, 159.Search in Google Scholar

[41] CrystalClear-SM Expert. User Manual. Rigaku/MSC Inc., Rigaku, Corporation, The Woodlands, TX, 2011.Search in Google Scholar

[42] CrystalClear-SM Expert 2.1 b31 (Rigaku, 2014), Rigaku/MSC Inc., Rigaku, Corporation, The Woodlands, TX.Search in Google Scholar

[43] CrysAlis PRO, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171.NET) (compiled Jan 14 2014, 18:38:05).Search in Google Scholar

[44] CrystalClear-SM Expert 2.1 b29 (Rigaku, 2013) Rigaku/MSC Inc., Rigaku, Corporation, The Woodlands, TX.Search in Google Scholar

[45] P. McArdle, K. Gilligan, D. Cunningham, R. Dark, M. Mahon, OSCAIL A method for the prediction of the crystal structure of ionic organic compounds – the crystal structures of o-toluidinium chloride and bromide and polymorphism of bicifadine hydrochloride. CrystEngComm.2004, 6, 303.10.1039/B407861FSearch in Google Scholar

[46] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination. Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

[47] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr.2011, 44, 1281.10.1107/S0108767319098143Search in Google Scholar

[48] G. M. Sheldrick, Crystal structure refinement with SHELXL7. Acta Crystallogr.2015, C71, 3.10.1107/S2053229614024218Search in Google Scholar

[49] Mercury 3.3.9 CCDC, 2016.Search in Google Scholar

[50] S. P. Westrip, publCIF: software for editing, validating and formatting crystallographic information files. J. Appl. Cryst.2010, 43, 920.10.1107/S0021889810022120Search in Google Scholar

[51] A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. McKinnon, B. Kahr, Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: pentamorphic 1,8-dihydroxyanthraquinone. Cryst. Growth Des.2008, 8, 4517.10.1021/cg8005212Search in Google Scholar

[52] S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, M. A. Spackman, Crystal explorer, University of Western Australia, 2012.Search in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2081).


Received: 2017-6-4
Accepted: 2017-8-31
Published Online: 2017-10-18
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2081/html
Scroll to top button