Abstract
Four new Ln(III)-based coordination polymers (CPs), [Eu(HL)Cl2(DMF)2]·(H2L) (1), [Dy(HL)Cl2(DMF)2]·(H2L) (2), [Er(HL)Cl2(DMF)(CH3OH)]·(DMF) (3) and [Yb(HL)Cl2(DMF)(H2O)]·(DMF) (4) (H2L=2,6-bis[(3-methoxysalicylidene)hydrazinocarbonyl]pyridine) have been synthesized through the reaction of Ln(III) chloride and H2L by using the vapour diffusion method. Interestingly, Cl− as a template agent plays a vital role in the formation of the target complexes. Single-crystal X-ray diffraction studies indicate that 1 and 2 are isostructural and crystallize in triclinic space group P1̅, while complexes 3 and 4 are isostructural and crystallize in monoclinic space group C2/c. Variable temperature magnetization measurement (χMT–T) demonstrates possible antiferromagnetic interactions in complex 2. Alternating-current (ac) susceptibility measurement furthermore indicated frequency dependence for both the in-phase (χ′) and out-of-phase (χ″) components in 2, suggesting that there is a slow relaxation behavior of the magnetization, which is typical of single-molecule magnets (SMMs). This is the first time that Ln(III) CPs based on such a dihydrazone ligand has been reported so far.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21371154), the Key Scientific Research Project of Henan Province (16A150052), Science and Technology Research Project of Henan Province (172102210281) and Dr. Funds of Henan Polytechnic University (B2016-47).
References
[1] B. Moulton, M. J. Zaworotko, From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem. Rev.2001, 101, 1629.10.1021/cr9900432Suche in Google Scholar PubMed
[2] C. Pettinari, A. Tăbăcaru, S. Galli, Coordination polymers and metal-organic frameworks based on poly(pyrazole)-containing ligands. Coord. Chem. Rev.2016, 307, 1.10.1016/j.ccr.2015.08.005Suche in Google Scholar
[3] X. J. Zhang, W. J. Wang, Z. J. Hu, G. Wang, K. Uvdal, Coordination polymers for energy transfer: preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev.2015, 284, 206.10.1016/j.ccr.2014.10.006Suche in Google Scholar
[4] Z. X. Zhou, X. Z. Yan, T. R. Cook, M. L. Saha, P. J. Stang, Engineering functionalization in a supramolecular polymer: hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform. J. Am. Chem. Soc.2016, 138, 806.10.1021/jacs.5b12986Suche in Google Scholar PubMed
[5] M. Wang, Y. R. Zheng, K. Ghosh, P. J. Stang, Metallosupramolecular tetragonal prisms via multicomponent coordination-driven template-free self-assembly. J. Am. Chem. Soc.2010, 132, 6282.10.1021/ja100889hSuche in Google Scholar PubMed PubMed Central
[6] R. L. E. Furlan, S. Otto, J. K. M. Sanders, Supramolecular templating in thermodynamically controlled synthesis. Proc. Sanders Natl. Acad. Sci.2002, 99, 4801.10.1073/pnas.022643699Suche in Google Scholar PubMed PubMed Central
[7] C. S. Campos-Fernández, B. L. Schottel, H. T. Chifotides, J. K. Bera, J. Bacsa, J. M. Koomen, D. H. Russell, K. R. Dunbar, Anion template effect on the self-assembly and interconversion of metallacyclophanes. J. Am. Chem. Soc.2005, 127, 12909.10.1021/ja052108qSuche in Google Scholar PubMed
[8] P. Diaz, D. M. P. Mingos, R. Vilar, A. J. P. White, D. J. Williams, Anion-templated synthesis of metallacages as a means for the colorimetric detection of chlorides. Inorg. Chem.2004, 43, 7597.10.1021/ic049508jSuche in Google Scholar PubMed
[9] Y. B. Dong, H. X. Xu, J. P. Ma, R. Q. Huang, Silver(I) coordination polymers based on a nano-sized bent bis(3-acetylenylphenyl-(4-cyanophenyl))oxadiazole ligand: the role of ligand isomerism and the templating effect of polyatomic anions and solvent intermediates. Inorg. Chem.2006, 45, 3325.10.1021/ic052158wSuche in Google Scholar PubMed
[10] L. Yi, X. Yang, T. B. Lu, P. Cheng, Self-assembly of right-handed helical infinite chain, one- and two-dimensional coordination polymers tuned via anions. Cryst. Growth Des.2005, 5, 1215.10.1021/cg049587+Suche in Google Scholar
[11] K. J. Wei, J. Ni, Y. Z. Liu, Q.-L. Liu, Self-assembly of silver(I) coordination polymers from AgX (X=BF4−, ClO4−, CF3COO−, and SO3CF3−) and a rigid bent 3,6-dicyano-9-phenylcarbazole ligand: the templating effect of anions. Eur. J. Inorg. Chem.2007, 24, 3868.10.1002/ejic.200601259Suche in Google Scholar
[12] Q. Chen, M. H. Zeng, L. Q. Wei, M. Kurmoo, A multifaceted cage cluster, [CoII6O12⊃X]− (X=Cl− or F−): halide template effect and frustrated magnetism. Chem. Mater.2010, 22, 4328.10.1021/cm1014459Suche in Google Scholar
[13] P. H. Lin, T. J. Burchell, L. Ungur, L. F. Chibotaru, W. Wernsdorfer, M. Murugesu, A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew. Chem. Int. Ed.2009, 48, 9489.10.1002/anie.200903199Suche in Google Scholar
[14] Y. N. Guo, X. H. Chen, S. F. Xue, J. K. Tang, Molecular assembly and magnetic dynamics of two novel Dy6 and Dy8 aggregates. Inorg. Chem.2012, 51, 4035.10.1021/ic202170zSuche in Google Scholar
[15] R. S. Vadavi, R. V. Shenoy, D. S. Badiger, K. B. Gudasi, L. G. Devi, M. Nethaji, Crystal structure of nonadentate tricompartmental ligand derived from pyridine-2,6-dicarboxylic acid: spectroscopic, electrochemical and thermal investigations of its transition metal(II) complexes. Spectrochim. Acta A2011, 79, 348.10.1016/j.saa.2011.03.011Suche in Google Scholar
[16] G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, Germany, 1997.Suche in Google Scholar
[17] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, Germany, 1997.Suche in Google Scholar
[18] V. B. Rana, S. K. Sahni, S. K. Sangal, Oxovanadium(IV) complexes of potential pentadentate ligands. J. Inorg. Nucl. Chem.1979, 41, 1498.10.1016/0022-1902(79)80223-7Suche in Google Scholar
[19] T. F. Zafiropoulos, J. C. Plakatouras, S. P. Perlepes, Preparation and properties of lanthanide(III) salts with N-(2-pyridyl)pyridine-2′-carboxamide. Polyhedron1991, 10, 2405.10.1016/S0277-5387(00)86202-6Suche in Google Scholar
[20] X. Chen, S. Zhan, C. Hu, Q. Meng, Y. Liu, Synthesis, electrochemical and magnetic properties of Cu3 complexes of a series of new compartmental trinucleating ligands H4L. J. Chem. Soc. Dalton Trans.1997, 2, 245.10.1039/a603850fSuche in Google Scholar
[21] J. L. Liu, Y. C. Chen, Y. Z. Zheng, W.-Q. Lin, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M.-L. Tong, Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem. Sci.2013, 4, 3310.10.1039/c3sc50843aSuche in Google Scholar
[22] T. Han, W. Shi, Z. Niu, B. Na, P. Cheng, Magnetic blocking from exchange interactions: slow relaxation of the magnetization and hysteresis loop observed in a dysprosium-nitronyl nitroxide chain compound with an antiferromagnetic ground state. Chem. Eur. J.2013, 19, 994.10.1002/chem.201202708Suche in Google Scholar PubMed
[23] L. N. Zhang, C. Zhang, B. Zhang, C. X. Du, H. Hou, Two series of pH-dependent lanthanide complexes showing solvent-induced single crystal to single crystal transformation, sorption and luminescence properties. CrystEngComm2015, 17, 2837.10.1039/C5CE00263JSuche in Google Scholar
[24] J. B. Peng, Q.-C. Zhang, X.-J. Kong, Z. P. Zheng, Y.-P. Ren, L. S. Long, R.-B. Huang, L.-S. Zheng, Z. Zheng, High-nuclearity 3d–4f clusters as enhanced magnetic coolers and molecular magnets. J. Am. Chem. Soc.2012, 134, 3314.10.1021/ja209752zSuche in Google Scholar PubMed
[25] J. L. Liu, Y. C. Chen, M. L. Tong, Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coord. Chem. Rev.2014, 281, 26.10.1016/j.ccr.2014.08.013Suche in Google Scholar
[26] S. Y. Lin, W. Wernsdorfer, L. Ungur, A. K. Powell, Y.-N. Guo, J. Tang, L. Zhao, L. F. Chibotaru, H.-J. Zhang, Coupling Dy3 triangles to maximize the toroidal moment. Angew. Chem. Int. Ed.2012, 51, 12767.10.1002/anie.201206602Suche in Google Scholar PubMed
[27] X. J. Zhang, V. Vieru, X. Feng, J.-L. Liu, Z. Zhang, B. Na, W. Shi, B.-W. Wang, A. K. Powell, L. F. Chibotaru, S. Gao, P. Cheng, J. R. Long, Influence of guest exchange on the magnetization dynamics of dilanthanide single-molecule-magnet nodes within a metal–organic framework. Angew. Chem. Int. Ed.2015, 54, 9861.10.1002/anie.201503636Suche in Google Scholar PubMed
[28] J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, A. K. Powell, Dysprosium triangles showing single-molecule magnet behavior of thermally excited spin states. Angew. Chem. Int. Ed.2006, 45, 1729.10.1002/anie.200503564Suche in Google Scholar PubMed
[29] P. H. Lin, W. B. Sun, M. F. Yu, G.-M. Li, P.-F. Yan, M. Murugesu, An unsymmetrical coordination environment leading to two slow relaxation modes in a Dy2 single-molecule magnet. Chem. Commun.2011, 47, 10993.10.1039/c1cc14223bSuche in Google Scholar PubMed
[30] Y. Wang, X. Li, T. W. Wang, Y. Song, X.-Z. You, Slow relaxation processes and single-ion magnetic behaviors in dysprosium-containing complexes. Inorg. Chem.2010, 49, 969.10.1021/ic901720aSuche in Google Scholar PubMed
[31] J. Bartolomé, G. Filoti, V. Kuncser, G. Schinteie, V. Mereacre, C. E. Anson, A. K. Powell, D. Prodius, C. Turta, Magnetostructural correlations in the tetranuclear series of {Fe3LnO2} butterfly core clusters: magnetic and Mössbauer spectroscopic study. Phys. Rev. B.2009, 80, 14430.10.1103/PhysRevB.80.014430Suche in Google Scholar
[32] D. I. Alexandropoulos, A. Fournet, L. C. Silva, A. M. Mowson, V. Bekiari, G. Christou, T. C. Stamatatos, Fluorescent naphthalene diols as bridging ligands in LnIII cluster chemistry: synthetic, structural, magnetic, and photophysical characterization of LnIII8 “christmas stars”. Inorg. Chem.2014, 53, 5420.10.1021/ic500806nSuche in Google Scholar PubMed
[33] P. F. Shi, Z. Chen, G. Xiong, B. Shen, J.-Z. Sun, P. Cheng, B. Zhao, Structures, luminescence, and magnetic properties of several three-dimensional lanthanide–organic frameworks comprising 4-carboxyphenoxy acetic acid. Cryst. Growth Des.2012, 12, 5203.10.1021/cg300277mSuche in Google Scholar
[34] F. Habib, J. Long, P. H. Lin, I. Korobkov, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M. Murugesu, Supramolecular architectures for controlling slow magnetic relaxation in field-induced single-molecule magnets. Chem. Sci.2012, 3, 2158.10.1039/c2sc01029aSuche in Google Scholar
[35] L. N. Zhang, S. T. Lu, C. Zhang, C. Du, H. Hou, Highly pH-dependent synthesis of two novel three-dimensional dysprosium complexes with interesting magnetic and luminescence properties. CrystEngComm2015, 17, 846.10.1039/C4CE02023ESuche in Google Scholar
[36] N. Ishikawa, M. Sugita, T. Ishikawa, S-y. Koshihara, Y. Kaizu, Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc.2003, 125, 8694.10.1021/ja029629nSuche in Google Scholar PubMed
[37] J. D. Rinehart, M. Fang, W. J. Evans, J. R. Long, Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat. Chem.2011, 3, 538.10.1038/nchem.1063Suche in Google Scholar PubMed
[38] F. Habib, M. Murugesu, Lessons learned from dinuclear lanthanide nano-magnets. Chem. Soc. Rev.2013, 42, 3278.10.1039/c2cs35361jSuche in Google Scholar PubMed
[39] L. Jia, Q. Chen, Y. S. Meng, H.-L. Sun, S. Gao, Elucidation of slow magnetic relaxation in a ferromagnetic 1D dysprosium chain through magnetic dilution. Chem. Commun.2014, 50, 6052.10.1039/c4cc01368aSuche in Google Scholar PubMed
[40] S. D. Jiang, B. W. Wang, G. Su, Z.-M. Wang, S. Gao, A mononuclear dysprosium complex featuring single-molecule-magnet behavior. Angew. Chem. Int. Ed.2010, 49, 7448.10.1002/anie.201004027Suche in Google Scholar PubMed
[41] Y. Bi, Y. N. Guo, L. Zhao, Y. Guo, S.-Y. Lin, S.-D. Jiang, J. Tang, B.-W. Wang, S. Gao, Capping ligand perturbed slow magnetic relaxation in dysprosium single-ion magnets. Chem. Eur. J.2011, 17, 124.10.1002/chem.201101838Suche in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2076).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Microporous uranyl chromates successively formed by evaporation from acidic solution
- Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid
- Organic and Metalorganic Crystal Structures
- The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase β-[Zn-(C7H4NO4)2]·3H2O
- Structural investigation and Hirshfeld surface analysis of three organic picrate salts
- Crystal structure and thermal behavior of isostructural binary complexes [Rh(en)3][Fe(CN)6] and [Rh(en)3][Cо(CN)6]
- Towards clathrates. 2. The frozen states of hydration of tert-butanol
- Anion-directed assembly of lanthanide coordination polymers with SMMs properties based on a dihydrazone ligand
- Crystallographic Computing
- DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders
- A new cubic Ia3̅d crystal structure observed in a model single component system by molecular dynamics simulation
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Microporous uranyl chromates successively formed by evaporation from acidic solution
- Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid
- Organic and Metalorganic Crystal Structures
- The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase β-[Zn-(C7H4NO4)2]·3H2O
- Structural investigation and Hirshfeld surface analysis of three organic picrate salts
- Crystal structure and thermal behavior of isostructural binary complexes [Rh(en)3][Fe(CN)6] and [Rh(en)3][Cо(CN)6]
- Towards clathrates. 2. The frozen states of hydration of tert-butanol
- Anion-directed assembly of lanthanide coordination polymers with SMMs properties based on a dihydrazone ligand
- Crystallographic Computing
- DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders
- A new cubic Ia3̅d crystal structure observed in a model single component system by molecular dynamics simulation