Abstract
2-((2-ethylphenyl)amino)nicotinic acid (2EPNA) was synthesized and its crystal structure was determined. It was observed that alkylation of the phenyl ring with ethyl group disrupts the planar conformation of the molecule by steric repulsion, resulting in formation of an acid-pyridine heterosynthon (instead of acid-acid homosynthon) in the crystal. Crystallization tendency from the melt state of the polymorph was studied by differential scanning calorimetry (DSC). It was revealed that this compound could form a very stable amorphous phase on melt quenching and not crystallize even on re-heating. The formation of acid-pyridine hydrogen bonding in the amorphous state is believed to be responsible for its good glass forming ability.
Acknowledgments
The authors thank Chao Endowment and Purdue Research Foundation (PRF) for supporting this project.
References
[1] K. Naito, P. Miura, Molecular design for nonpolymieric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties. J. Phys. Chem.1993, 97, 6240.10.1021/j100125a025Suche in Google Scholar
[2] R. Wang, C. Pellerin, O. Lebel, Role of hydrogen bonding in the formation of glasses by small molecules: a triazine case study. J. Mater. Chem.2009, 19, 2747.10.1039/b820294jSuche in Google Scholar
[3] J. D. Wuest, O. Lebel, Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron2009, 65, 7393.10.1016/j.tet.2009.07.026Suche in Google Scholar
[4] J. A. Baird, B. Van Eerdenbrugh, L. S. Taylor, A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci.2010, 99, 3787.10.1002/jps.22197Suche in Google Scholar PubMed
[5] A. R. Oganov, A. O. Lyakhov, M. Valle, How evolutionary crystal structure prediction works-and why. Acc. Chem. Res.2011, 44, 227.10.1021/ar1001318Suche in Google Scholar PubMed
[6] S. L. Price, Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res.2009, 42, 117.10.1021/ar800147tSuche in Google Scholar PubMed
[7] S. M. Woodley, R. Catlow, Crystal structure prediction from first principles. Nat. Mater.2008, 7, 937.10.1038/nmat2321Suche in Google Scholar PubMed
[8] R. W. Hartel, Crystallization in Foods. 1st ed. Food Engineering Series. Springer, USA, 2001.Suche in Google Scholar
[9] N. J. Babu, A. Nangia, Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des.2011, 11, 2662.10.1021/cg200492wSuche in Google Scholar
[10] S. Bates, G. Zografi, D. Engers, K. Morris, K. Crowley, A. Newman, Analysis of amorphous and nanocrystalline solids from their X-ray diffraction patterns. Pharm. Res.2006, 23, 2333.10.1007/s11095-006-9086-2Suche in Google Scholar PubMed
[11] T. Matsumoto, G. Zografi, Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm. Res.1999, 16, 1722.10.1023/A:1018906132279Suche in Google Scholar
[12] A. Newman, G. Knipp, G. Zografi, Assessing the performance of amorphous solid dispersions. J. Pharm. Sci.2012, 101, 1355.10.1002/jps.23031Suche in Google Scholar PubMed
[13] S. H. Long, S. Parkin, M. A. Siegler, A. Cammers, T. L. Li, Polymorphism and phase behaviors of 2-(phenylamino)nicotinic acid. Cryst. Growth Des.2008, 8, 4006.10.1021/cg800123zSuche in Google Scholar
[14] S. H. Long, S. Parkin, M. Siegler, C. P. Brock, A. Cammers, T. L. Li, Polymorphism of an organic system effected by the directionality of hydrogen-bonding chains. Cryst. Growth Des.2008, 8, 3137.10.1021/cg800339hSuche in Google Scholar
[15] S. H. Long, T. L. Li, Controlled formation of the acid-pyridine heterosynthon over the acid-acid homosynthon in 2-anilinonicotinic acids. Cryst. Growth Des.2009, 9, 4993.10.1021/cg900786bSuche in Google Scholar
[16] S. H. Long, T. Li, Enforcing molecule’s pi-conjugation and consequent formation of the acid-acid homosynthon over the acid-pyridine heterosynthon in 2-anilinonicotinic acids. Cryst. Growth Des.2010, 10, 2465.10.1021/cg100227sSuche in Google Scholar
[17] A. Kalra, P. Tishmack, J. W. Lubach, E. Munson, L. S. Taylor, S. R. Byrn, T. Li, Impact of supramolecular aggregation on the crystallization kinetics of organic compounds from the supercooled liquid state. Mol. Pharmacol.2017, 14, 2126.10.1021/acs.molpharmaceut.7b00245Suche in Google Scholar PubMed
[18] Bruker, “APEX2” Bruker-AXS, Madison, WI, USA, 2006.Suche in Google Scholar
[19] L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr.2015, 48, 3.10.1107/S1600576714022985Suche in Google Scholar PubMed PubMed Central
[20] G. M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A2015, 71, 3.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central
[21] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. C2015, 71, 3.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central
[22] S. Parkin, Expansion of scalar validation criteria to three dimensions: the R tensor. Acta Crystallogr. A2000, 56, 157.10.1107/S010876739901497XSuche in Google Scholar
[23] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSuche in Google Scholar PubMed PubMed Central
[24] A. J. C. Wilson, International Tables for Crystallography, Vol C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Holland, 1992.Suche in Google Scholar
[25] R. Ditchfie, Self-consistent perturbation-theory of diamagnetism. 1. Gauge-invariant lcao method for nmr chemical-shifts. Mol. Phys.1974, 27, 789.10.1080/00268977400100711Suche in Google Scholar
[26] K. Wolinski, J. F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for nmr chemical-shift calculations. J. Am. Chem. Soc.1990, 112, 8251.10.1021/ja00179a005Suche in Google Scholar
[27] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys.1996, 104, 5497.10.1063/1.471789Suche in Google Scholar
[28] L. B. Casabianca, A. C. De Dios, Ab initio calculations of NMR chemical shifts. J. Chem. Phys.2008, 128, 10.10.1063/1.2816784Suche in Google Scholar
[29] J. C. Facelli, Calculations of chemical shieldings: theory and applcations. Concepts in Magnetic Resonance Part A2004, 20A, 42.10.1002/cmr.a.10096Suche in Google Scholar
[30] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford, CT, 2009.Suche in Google Scholar
[31] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, C. M. Zicovich-Wilson, Z. Kristallogr.2005, 220, 571.10.1524/zkri.220.5.571.65065Suche in Google Scholar
[32] D. Thompson, J. Braun, R. Ford, OpenDX: Paths to Visuallization, VIS, Inc., Missoula, MT, 2001.Suche in Google Scholar
[33] M. C. Etter, Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res.1990, 23, 120.10.1021/ar00172a005Suche in Google Scholar
[34] M. Zhang, T. Li, Intermolecular interactions in organic crystals: gaining insight from electronic structure analysis by density functional theory. CrystEngComm2014, 16, 7162.10.1039/C4CE00411FSuche in Google Scholar
[35] C. Morell, A. Grand, A. Toro-Labbe, New dual descriptor for chemical reactivity. J. Phys. Chem. A2005, 109, 205.10.1021/jp046577aSuche in Google Scholar PubMed
[36] R. H. Tromp, D. Van Dusschoten, R. Parker, S. G. Ring, Carbon-13 nuclear magnetic relaxation in supercooled liquid and glassy maltose. Phys. Chem. Chem. Phys.1999, 1, 1927.10.1039/a808667bSuche in Google Scholar
[37] R. Lefort, P. Bordat, A. Cesaro, M. Descamps, Exploring conformational energy landscape of glassy disaccharides by cross polarization magic angle spinning C-13 NMR and numerical simulations. I. Methodological aspects. J. Chem. Phys.2007, 126, 9.10.1063/1.2409934Suche in Google Scholar
[38] J. Baronsky, M. Preu, M. Traeubel, N. A. Urbanetz, Perfusion calorimetry in the characterization of solvates forming isomorphic desolvates. Eur. J. Pharm. Sci.2011, 44, 74.10.1016/j.ejps.2011.06.008Suche in Google Scholar PubMed
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2017-2070).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Microporous uranyl chromates successively formed by evaporation from acidic solution
- Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid
- Organic and Metalorganic Crystal Structures
- The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase β-[Zn-(C7H4NO4)2]·3H2O
- Structural investigation and Hirshfeld surface analysis of three organic picrate salts
- Crystal structure and thermal behavior of isostructural binary complexes [Rh(en)3][Fe(CN)6] and [Rh(en)3][Cо(CN)6]
- Towards clathrates. 2. The frozen states of hydration of tert-butanol
- Anion-directed assembly of lanthanide coordination polymers with SMMs properties based on a dihydrazone ligand
- Crystallographic Computing
- DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders
- A new cubic Ia3̅d crystal structure observed in a model single component system by molecular dynamics simulation
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Microporous uranyl chromates successively formed by evaporation from acidic solution
- Crystal packing and crystallization tendency from the melt of 2-((2-ethylphenyl)amino)nicotinic acid
- Organic and Metalorganic Crystal Structures
- The role of hydrogen bonds in order-disorder transition of a new incommensurate low temperature phase β-[Zn-(C7H4NO4)2]·3H2O
- Structural investigation and Hirshfeld surface analysis of three organic picrate salts
- Crystal structure and thermal behavior of isostructural binary complexes [Rh(en)3][Fe(CN)6] and [Rh(en)3][Cо(CN)6]
- Towards clathrates. 2. The frozen states of hydration of tert-butanol
- Anion-directed assembly of lanthanide coordination polymers with SMMs properties based on a dihydrazone ligand
- Crystallographic Computing
- DIANNA (diffraction analysis of nanopowders) – a software for structural analysis of nanosized powders
- A new cubic Ia3̅d crystal structure observed in a model single component system by molecular dynamics simulation