Startseite Pressure-induced transformation processes in ferroelastic Pb3(P1–xAsxO4)2, x = 0 and 0.80
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pressure-induced transformation processes in ferroelastic Pb3(P1–xAsxO4)2, x = 0 and 0.80

  • Boriana Mihailova EMAIL logo , Ross J. Angel EMAIL logo , Naemi Waeselmann , Bernd J. Maier , Carsten Paulmann und Ulrich Bismayer
Veröffentlicht/Copyright: 1. September 2015

Abstract

The high-pressure behaviour of two representative palmierite-type Pb3(PxAs1–xO4)2 ferroelastic compounds with x = 0 and 0.80 was analyzed by combined single-crystal X-ray diffraction and Raman spectroscopy. Single-crystal diffraction measurements on the As-rich compound Pb3(P0.20As0.80O4)2 show that it undergoes the same macroscopic monoclinic to trigonal phase transition as previously observed in pure Pb3(PO4)2 but with a significantly lower transition pressure, pc = 0.90(4) GPa for x = 0.80 as opposed to pc = 1.81(1) for x = 0.0. Synchrotron X-ray diffraction experiments reveal that both compounds exhibit significant diffuse scattering in a pressure interval of ~1.5 GPa above the corresponding pressure-induced transitions, indicating the persistence of monoclinic nanodomains within the macroscopically trigonal phase above the phase-transition point, similar to the high-temperature structural state. Raman spectroscopy reveal quite distinct lattice dynamics for x = 0 and x = 0.80, indicating different pathways of pressure-driven structural alteration. The pure phosphate compound shows a displacive phase transition of thermodynamically second-order type, whereas the As-rich compound exhibits an order-disorder phase transition with multistep structural changes on the mesoscopic scale. The pressure evolution of the Pb phonon modes as well as the broadening of the X-ray diffraction peaks suggests a further pressure-induced phase transition occurring in the range 5–7 GPa for Pb3(P0.20As0.80O4)2, whilst no indication for a second phase transition up to 10 GPa was observed for Pb3(PO4)2.


Corresponding authors: Boriana Mihailova, Department Geowissenschaften, Universität Hamburg, 20146 Hamburg, Germany, E-mail: ; and Ross J. Angel, Department Geowissenschaften, Universität Hamburg, 20146 Hamburg, Germany; and Dipartimento di Geoscienze, Universita degli studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy, E-mail:

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (INST 152/526-1) in the form of a Mercator Professorship and the Fondazione Cariparo (Fondazione Cassa di Risparmio di Padova e Rovigo) is gratefully acknowledged.

References

[1] G. Xu, Competing orders in PZN–xPT and PMN–xPT relaxor ferroelectrics. J. Phys. Soc. Jpn. 2010, 79, 011011/1-12.10.1143/JPSJ.79.011011Suche in Google Scholar

[2] A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, G. Koster, Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations. Phys. Rev. B 2011, 83, 064101/1-10.10.1103/PhysRevB.83.064101Suche in Google Scholar

[3] E. K. H. Salje, T. Beirau, B. Mihailova, T. Malcherek, U. Bismayer, Chemical mixing and hard mode spectroscopy in ferroelastic lead phosphate arsenate: local symmetry splitting and multiscaling behaviour. J. Phys. Cond. Matter 2010, 22, 045403.10.1088/0953-8984/22/4/045403Suche in Google Scholar PubMed

[4] K. Momma, F. Izumi, VESTA: a three-dimensional visulization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653.10.1107/S0021889808012016Suche in Google Scholar

[5] H. N. Ng, C. Calvo, Electron paramagnetic resonance and X-ray studies of the phase transformation in Pb3P2O8. Canad. J. Phys. 1975, 53, 42.10.1139/p75-007Suche in Google Scholar

[6] U. Bismayer, E. Salje, A. M. Glazer, J. Cosier, Effect of strain-induced order-parameter coupling on the ferroelastic behaviour of lead phosphate-arsenate. Phase Trans. 1986, 6, 129.10.1080/01411598608221634Suche in Google Scholar

[7] E. K. H. Salje, A. Graeme-Barber, M. A. Carpenter, U. Bismayer, Lattice parameters, spontaneous strain and phase transitions in Pb3(PO4)2. Acta Crystallogr. B 1993, 49, 387.10.1107/S0108768192008127Suche in Google Scholar

[8] R. J. Angel, T. Beirau, B. Mihailova, C. Paulmann, U. Bismayer, The role of lone pairs in the ferroelastic phase transition in the palmierite lead phosphate-arsenate solid solution. Z. Krisallogr. 2012, 227, 585.10.1524/zkri.2012.1462Suche in Google Scholar

[9] D. L. Decker, S. Petersen, D. Debray, Pressure-induced ferroelastic phase transition in Pb3(P04)2: A neutron-diffraction study. Phys. Rev. B. 1979, 19, 3552.10.1103/PhysRevB.19.3552Suche in Google Scholar

[10] R. J. Angel, U. Bismayer, Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: lattice parameters and spontaneous strain. Acta Crystallogr. B 1999, 55, 896.10.1107/S0108768199008083Suche in Google Scholar

[11] R. J. Angel, U. Bismayer, W. G. Marshall, Renormalization of the phase transition in lead phosphate, Pb3(PO4)2, by high pressure: structure. J. Phys. Cond. Matter 2001, 13, 5353.10.1088/0953-8984/13/22/325Suche in Google Scholar

[12] R. J. Angel, U. Bismayer, W. G. Marshall, Local and long range order in ferroelastic lead phosphate at high pressure. Acta Crystallogr. B 2004, 60, 1.10.1107/S0108768103026582Suche in Google Scholar PubMed

[13] M. Kagawa, H. Orihara, Y. Ishibashi, High pressure Raman scattering study of ferroelastic Pb3(PO4)2 crystal. Acta Crystallogr. B 1987, 56, 1423.10.1143/JPSJ.56.1423Suche in Google Scholar

[14] K.-S. Lee, S.-H. Eom, Y. S. Yu, Raman-scattering study of ferroelastic Pb3(PO4)2 at high pressures. J. Koren. Phys. Soc. B 2005, 46, 315.Suche in Google Scholar

[15] U. Bismayer, E. Salje, Ferroelastic phases in Pb3(PO4)2-Pb3(AsO4)2; X-ray and optical experiments. Acta Cryst. A 1981, 37, 145.10.1107/S0567739481000417Suche in Google Scholar

[16] R. Boehler, New diamond cell for single-crystal x-ray diffraction. Rev. Sci. Instrum. 2006, 77, 115103/1-3.10.1063/1.2372734Suche in Google Scholar

[17] R. J. Angel, M. Bujak, J. Zhao, G. D. Gatta, S. D. Jacobsen, Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Cryst. 2007, 40, 26.10.1107/S0021889806045523Suche in Google Scholar

[18] R. G. Munro, G. J. Piermarini, S. Block, W. B. Holzapfel, Model line shape analysis for the ruby R lines used for pressure measurements. J. Appl. Phys. 1985, 57, 165.10.1063/1.334837Suche in Google Scholar

[19] R. Miletich, D. R. Allan, W. F. Kuhs, High-pressure single-crystal techniques, in High-pressure and high-temperature crystal chemistry, R.M. Hazen and R.T. Downs, Editors. 2000, Mineralogical Society of America, Washington, DC, p. 445.10.1515/9781501508707-018Suche in Google Scholar

[20] R. J. Angel, L. W. Finger, SINGLE: a program to control single-crystal diffractometers. J. Appl. Cryst. 2011, 44, 247.10.1107/S0021889810042305Suche in Google Scholar

[21] H. King, L. W. Finger, Diffracted beam crystal centering and its application to high-pressure crystallography. J. Appl. Cryst. 1979, 12, 374.10.1107/S0021889879012723Suche in Google Scholar

[22] R. Ralph, L. W. Finger, A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. J. Appl. Cryst. 1982, 15, 537.10.1107/S0021889882012539Suche in Google Scholar

[23] R. J. Angel, D. R. Allan, R. Miletich, W. L. Finger, The use of quartz as an internal pressure standard in high-pressure crystallography. J. Appl. Cryst. 1997, 30, 461.10.1107/S0021889897000861Suche in Google Scholar

[24] T. Malcherek, Displacive phase transitions. EMU Notes in Mineralogy, Ed. R. Miletich, 2005, 7, 139–171.10.1180/EMU-notes.7.6Suche in Google Scholar

[25] R. J. Angel, J. Gonzalez-Platas, M. Alvaro, EosFit7c and a Fortran module (library) for equation of state calculations. Z. Krisallogr. 2014, 229, 405.10.1515/zkri-2013-1711Suche in Google Scholar

[26] B. Mihailova, U. Bismayer, A. Engelhardt, B. Guttler, Wall-related Raman scattering in ferroelastic lead phosphate Pb3(PO4)2. J. Phys. Cond. Matter 2001, 13, 9383.10.1088/0953-8984/13/41/323Suche in Google Scholar

[27] B. Mihailova, U. Bismayer, B. Guttler, L. Tosheva, J. Sterte, Raman scattering in locally inhomogeneous oxide crystals. Phase Transit. 2003, 76, 17.10.1080/0141159031000076011Suche in Google Scholar

Published Online: 2015-9-1
Published in Print: 2015-9-1

©2015 by De Gruyter

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2015-1851/html
Button zum nach oben scrollen