Abstract
Several porous phases have been characterized in the last years by tomographic electron diffraction. This paper provides an overview of the analyzed phases, pointing out the difficulties associated with different classes of materials or specific sample characteristics. The two methods for tomographic electron diffraction acquisition, automated diffraction tomography and rotation electron diffraction, are described in detail, as well as data reduction algorithms. Attainments and limits of different structure determination and refinement algorithms are discussed for inorganic, organic and hybrid organic-inorganic materials. Finally, it is shown how tomographic electron diffraction and X-ray powder diffraction data can be combined for a comprehensive characterization of porous materials.
Acknowledgments
Authors are thankful to all the colleagues that worked with them in the synthesis and characterization of porous materials. This work was supported by the German Stiftung Rheinland Pfalz für Innovation and the Italian project FIRB2013 – Exploring the Nanoworld.
References
[1] M. E. Davis, Ordered porous materials for emerging applications. Nature2002, 417, 813.10.1038/nature00785Suche in Google Scholar PubMed
[2] A. Corma, State of the art and future challenges of zeolites as catalysts. J. Catal.2003, 216, 298-312.Suche in Google Scholar
[3] A. U. Czaja, N. Trukhan, U. Müller, Industrial applications of metal–organic frameworks. Chem. Soc. Rev.2009, 38, 1284.Suche in Google Scholar
[4] H. M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr.1969, 2, 65.Suche in Google Scholar
[5] R. Černý, V. Favre-Nicolin, Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives. Z. Kristallogr.2007, 222, 105.Suche in Google Scholar
[6] W. I. F. David, K. Shankland. Structure determination from powder diffraction data. Acta Crystallogr. A2008, 64, 52.10.1107/S0108767307064252Suche in Google Scholar PubMed
[7] T. Willhammar, Y. Yun, X. Zou, Structural Determination of ordered porous solids by electron crystallography. Adv. Funct. Mater.2014, 24, 182.Suche in Google Scholar
[8] A. Klug. Image analysis and reconstruction in the electron microscopy of biological macromolecules. Chem. Scripta1978/1979, 14, 245.Suche in Google Scholar
[9] X. Zou, S. Hovmöller, P. Oleynikov. Electron crystallography, Oxford University Press, New York, 2011.10.1093/acprof:oso/9780199580200.003.0013Suche in Google Scholar
[10] J. Ruan, P. Wu, B. Slater, O. Terasaki, Structure elucidation of the highly active titanosilicate catalyst Ti-YNU-1. Angew. Chem. Int. Ed.2005, 44, 6719.Suche in Google Scholar
[11] M. Moliner, T. Willhammar, W. Wan, J. González, F. Rey, J. L. Jorda, X. Zou, A. Corma, Synthesis design and structure of a multipore zeolite with interconnected 12- and 10-MR channels. J. Am. Chem. Soc.2012, 134, 6473.Suche in Google Scholar
[12] F. Gramm, C. Baerlocher, L. B. McCusker, S. J. Warrender, P. A. Wright, B. Han, S. B. Hong, Z. Liu, T. Ohsuna, O. Terasaki, Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature2006, 444, 79.10.1038/nature05200Suche in Google Scholar PubMed
[13] C. Baerlocher, F. Gramm, L. Massüger, L. B. McCusker, Z. He, S. Hovmöller, X. Zou, Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science2007, 315, 1113.10.1126/science.1137920Suche in Google Scholar PubMed
[14] C. Baerlocher, D. Xie, L. B. McCusker, S.-J. Hwang, I. Y. Chan, K. Ong, A. W. Burton, S. I. Zones, Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74, Nat. Mater.2008, 7, 631.Suche in Google Scholar
[15] L. B. McCusker, C. Baerlocher, Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. Chem. Commun.2009, 1439.10.1039/b821716eSuche in Google Scholar PubMed
[16] J. Sun, Z. He, S. Hovmöller, X. Zou, F. Gramm, C. Baerlocher, L. B. McCusker. Structure determination of the zeolite IM-5 using electron crystallography, Z. Kristallogr.2010, 225, 77.Suche in Google Scholar
[17] T. Willhammar, J. Sun, W. Wan, P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martínez, F. Rey, A. Corma. Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nat. Chem.2012, 4, 188.Suche in Google Scholar
[18] S. Nicolopoulos, J. M. González-Calbet, M. Vallet-Regí, A. Corma, C. Core1l, J. M. Guil, J. Pérez-Pariente, Direct phasing in electron crystallography: ab initio determination of a new MCM-22 zeolite structure. J. Am. Chem. Soc.1995, 117, 8947.Suche in Google Scholar
[19] P. Wagner, O. Terasaki, S. Ritsch, J. Geraldo Nery, S. I. Zones, M. E. Davis, K. Hiraga, Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution. J. Phys. Chem. B1999, 103, 8245.10.1021/jp991389jSuche in Google Scholar
[20] D. L. Dorset, Structural Electron Crystallography, Plenum Press, New York, 1995.10.1007/978-1-4757-6621-9Suche in Google Scholar
[21] D. L. Dorset, W. J. Roth, C. J. Gilmore, Electron crystallography of zeolites – the MWW family as a test of direct 3D structure determination. Acta Crystallogr. A2005, 61, 516.10.1107/S0108767305024670Suche in Google Scholar PubMed
[22] D. L. Dorset, C J. Gilmore, J. L. Jorda, S. Nicolopoulos, Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy2007, 107, 462.10.1016/j.ultramic.2006.05.013Suche in Google Scholar PubMed
[23] R. Vincent, P. A. Midgley, Double conical beam-rocking system for measurement of integrated electron diffraction intensities, Ultramicroscopy1994, 53, 271.10.1016/0304-3991(94)90039-6Suche in Google Scholar
[24] C. S. Own, L. D. Marks, W. Sinkler, Precession electron diffraction 1: multislice simulation. Acta Crystallogr. A2006, 62, 434.10.1107/S0108767306032892Suche in Google Scholar PubMed
[25] L. Palatinus, D. Jacob, P. Cuvillier, M. Klementová, W. Sinkler, L. D. Marks, Structure refinement from precession electron diffraction data. Acta Crystallogr. A2013, 69, 171.10.1107/S010876731204946XSuche in Google Scholar PubMed
[26] D. L. Dorset, The crystal structure of ZSM-10, a powder X-ray and electron diffraction study. Z. Kristallogr.2006, 221, 260.Suche in Google Scholar
[27] U. Kolb, T. Gorelik, C. Kübel, M. T. Otten, D. Hubert, Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy2007, 107, 507.10.1016/j.ultramic.2006.10.007Suche in Google Scholar PubMed
[28] U. Kolb, T. Gorelik, M. T. Otten, Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy2008, 108, 763.10.1016/j.ultramic.2007.12.002Suche in Google Scholar PubMed
[29] E. Mugnaioli, T. Gorelik, U. Kolb, “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy2009, 109, 758.10.1016/j.ultramic.2009.01.011Suche in Google Scholar PubMed
[30] U. Kolb, E. Mugnaioli, T. E. Gorelik, Automated electron diffraction tomography – a new tool for nano crystal structure analysis. Cryst. Res. Technol.2011, 46, 542.Suche in Google Scholar
[31] I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich, The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineral. Mag.2010, 74, 159.Suche in Google Scholar
[32] D. Zhang, P. Oleynikov, S. Hovmöller, X. Zou, Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr.2010, 225, 94.Suche in Google Scholar
[33] S. Hovmöller, Electron Rotation Camera, Patent WO/2008/060237, 2008.Suche in Google Scholar
[34] G. C. Capitani, E. Mugnaioli, J. Rius, P. Gentile, T. Catelani, A. Lucotti, U. Kolb, The Bi sulfates from the Alfenza Mine, Crodo, Italy: an automatic electron diffraction tomography (ADT) study. Am. Mineral.2014, 99, 500.Suche in Google Scholar
[35] J. Jiang, J. L. Jorda, J. Yu, L. A. Baumes, E. Mugnaioli, M. J. Diaz-Cabanas, U. Kolb, A. Corma, Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science2011, 333, 1131.10.1126/science.1208652Suche in Google Scholar PubMed
[36] J. Rius, E. Mugnaioli, O. Vallcorba, U. Kolb, Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes. Acta Crystallogr. A2013, 69, 396.10.1107/S0108767313009549Suche in Google Scholar PubMed
[37] S. Smeets, L. B. McCusker, C. Baerlocher, E. Mugnaioli, U. Kolb, Using FOCUS to solve zeolite structures from three-dimensional electron diffraction data. J. Appl. Crystallogr.2013, 46, 1017.Suche in Google Scholar
[38] J. Su, E. Kapaca, L. Liu, V. Georgieva, W. Wan, J. Sun, V. Valtchev, S. Hovmöller, X. Zou, Structure analysis of zeolites by rotation electron diffraction (RED). Micropor. Mesopor. Mat.2014, 189, 115.Suche in Google Scholar
[39] W. Hua, H. Chen, Z.-B. Yu, X. Zou, J. Lin, J. Sun, A germanosilicate structure with 11 x 11 x 12-ring channels solved by electron crystallography. Angew. Chem. Int. Ed.2014, 53, 5868.Suche in Google Scholar
[40] R. Martínez-Franco, M. Moliner, Y. Yun, J. Sun, W. Wan, X. Zou, A. Corma, Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc. Natl. Acad. Sci. USA2013, 110, 3749.10.1073/pnas.1220733110Suche in Google Scholar PubMed PubMed Central
[41] P. Guo, L. Liu, Y. Yun, J. Su, W. Wan, H. Gies, H. Zhang, F.-S. Xiao, X. Zou, Ab initio structure determination of interlayer expanded zeolites by single crystal rotation electron diffraction. Dalton T.2014, 43, 10593.Suche in Google Scholar
[42] G. Bellussi, E. Montanari, E. Di Paola, R. Millini, A. Carati, C. Rizzo, W. O’Neil Parker Jr., M. Gemmi, E. Mugnaioli, U. Kolb, S. Zanardi, ECS-3: a crystalline hybrid organic–inorganic aluminosilicate with open porosity. Angew. Chem. Int. Ed.2012, 51, 666.Suche in Google Scholar
[43] D. Denysenko, M. Grzywa, M. Tonigold, B. Streppel, I. Krkljus, M. Hirscher, E. Mugnaioli, U. Kolb, J. Hanss, D. Volkmer. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. Chem.-Eur. J.2011, 17, 1837.Suche in Google Scholar
[44] M. Feyand, E. Mugnaioli, F. Vermoortele, B. Bueken, J. M. Dieterich, T. Reimer, U. Kolb, D. de Vos, N. Stock, Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem. Int. Ed.2012, 51, 10373.Suche in Google Scholar
[45] Y.-B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou, O. M. Yaghi, Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc.2013, 135, 16336.Suche in Google Scholar
[46] G. C. Capitani, P. Gentile, E. Mugnaioli, J. Rius, VittorioMattiolite, Proposal for a new mineral submitted to the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, 2014.Suche in Google Scholar
[47] I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, Essential features of the polytypic charoite-96 structure compared to charoite-90. Mineral. Mag.2011, 75, 2833.Suche in Google Scholar
[48] E. Mugnaioli, T. E. Gorelik, A. Stewart, U. Kolb, “Ab-Initio” Structure Solution of Nano-Crystalline Minerals and Synthetic Materials by Automated Electron Tomography, in Minerals as Advanced Materials II, (Ed. S. V. Krivovichev) Springer, Heidelberg , pp. 41–54, 2012..10.1007/978-3-642-20018-2_5Suche in Google Scholar
[49] E. Mugnaioli, U. Kolb, Applications of automated diffraction tomography (ADT) on nanocrystalline porous materials. Micropor. Mesopor. Mat.2013, 166, 93.Suche in Google Scholar
[50] Y. Lorgouilloux, M. Dodin, E. Mugnaioli, C. Marichal, P. Caullet, N. Bats, U. Kolb, J.-L. Paillaud. IM-17: a new zeolitic material, synthesis and structure elucidation from electron diffraction ADT data and Rietveld analysis. RSC Adv.2014, 4, 19440.Suche in Google Scholar
[51] R. Arletti, E. Mugnaioli, U. Kolb, F. Di Renzo, MZ-35, a new layered pentasil borosilicate synthesized in the presence of large alkali cations. Micropor. Mesopor. Mat.2014, 189, 64.Suche in Google Scholar
[52] E. Mugnaioli, S. J. Sedlmaier, O. Oeckler, U. Kolb, W. Schnick, Ba6P12N17O9Br3 – A column-type phosphate structure solved from single-nanocrystal data obtained by automated electron diffraction tomography. Eur. J. Inorg. Chem.2012, 121.10.1002/ejic.201101149Suche in Google Scholar
[53] W. Wan, J. Sun, J. Su, S. Hovmöller, X. Zou, Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr.2013, 46, 1863.Suche in Google Scholar
[54] T. E. Gorelik, A. A. Stewart, U. Kolb, Structure solution with automated electron diffraction tomography data: different instrumental approaches. J. Microsc.2011, 244, 325.Suche in Google Scholar
[55] M. Gemmi, I. Campostrini, F. Demartin, T. E. Gorelik, C. M. Gramaccioli, Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron diffraction tomography. Acta Crystallogr. B2012, 68, 15.10.1107/S010876811104688XSuche in Google Scholar PubMed
[56] U. Kolb, T. E. Gorelik, E. Mugnaioli, A. Stewart, Structural characterization of organics using manual and automated electron diffraction. Polym. Rev.2010, 50, 385.Suche in Google Scholar
[57] M. Gemmi, P. Oleynikov, Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr.2013, 228, 51.Suche in Google Scholar
[58] L. Palatinus, M. Klementová, V. Dřínek, M. Jarošová, V. Petříček, An incommensurately modulated structure of η’-phase of Cu3+xSi determined by quantitative electron diffraction tomography. Inorg. Chem.2011, 50, 3743.Suche in Google Scholar
[59] S. Schlitt, T. E. Gorelik, A. A. Stewart, E. Schömer, T. Raasch, U. Kolb, Application of clustering techniques to electron diffraction data: determination of unit-cell parameters. Acta Crystallogr. A2012, 68, 536.10.1107/S0108767312026438Suche in Google Scholar PubMed
[60] M. Buxhuku, V. Hansen, P. Oleynikov, J. Gjønnes, The determination of rotation axis in the rotation electron diffraction technique. Microsc. Microanal.2013, 19, 1276.Suche in Google Scholar
[61] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, SIR2004: an improved tool for crystal structure determination and refinement. J. Appl. Crystallogr.2005, 38, 381.Suche in Google Scholar
[62] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, IL MILIONE: a suite of computer programs for crystal structure solution of proteins. J. Appl. Crystallogr.2007, 40, 609.Suche in Google Scholar
[63] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, SIR2011: a new package for crystal structure determination and refinement. J. Appl. Crystallogr.2012, 45, 357.Suche in Google Scholar
[64] G. M. Sheldrick, A short history of SHELX.Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Suche in Google Scholar PubMed
[65] E. Mugnaioli, U. Kolb, Structure solution of zeolites by automated electron diffraction tomography – Impact and treatment of preferential orientation. Micropor. Mesopor. Mat.2014, 189, 107.Suche in Google Scholar
[66] J. Rius, Direct phasing from Patterson syntheses by δ recycling. Acta Crystallogr. A2012, 68, 77.10.1107/S0108767311043145Suche in Google Scholar PubMed
[67] J. Rius, Patterson function and δ recycling: derivation of the phasing equations. Acta Crystallogr. A2012, 68, 399.10.1107/S0108767312008768Suche in Google Scholar PubMed
[68] G. Oszlányi, A. Sütő, Ab initio structure solution by charge flipping. Acta Crystallogr. A2004, 60, 134.10.1107/S0108767303027569Suche in Google Scholar PubMed
[69] L. Palatinus, The charge-flipping algorithm in crystallography. Acta Crystallogr. B2013, 69, 1.10.1107/S0108767313099868Suche in Google Scholar
[70] L. Palatinus, G. Chapuis, SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.2007, 40, 786.Suche in Google Scholar
[71] P. Boullay, L. Palatinus, N. Barrier, precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15, Inorg. Chem.2013, 52, 6127.Suche in Google Scholar
[72] R. W. Grosse-Kunstleve, L. B. McCusker, C. Baerlocher, Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites. J. Appl. Crystallogr.1997, 30, 985.Suche in Google Scholar
[73] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Optimization by simulated annealing. Science1983, 220, 671.10.1126/science.220.4598.671Suche in Google Scholar PubMed
[74] W. I. F. David, K. Shankland, N. Shankland, Routine determination of molecular crystal structures from powder diffraction data, Chem. Commun.1998, 931.10.1039/a800855hSuche in Google Scholar
[75] V. Favre-Nicolin, R. Černý, FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction. J. Appl. Crystallogr.2002, 35, 734.Suche in Google Scholar
[76] D. Jacob, L. Palatinus, P. Cuvillier, H. Leroux, C. Domeneghetti, F. Cámara, Ordering state in orthopyroxene as determined by precession electron diffraction. Am. Mineral.2013, 98, 1526.Suche in Google Scholar
[77] D. Xie, C. Baerlocher, L. B. McCusker, Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution. J. Appl. Crystallogr.2008, 41, 1115.Suche in Google Scholar
[78] J. Sun, C. Bonneau, A. Cantín, A. Corma, M. J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, X. Zou, The ITQ-37 mesoporous chiral zeolite. Nature2009, 458, 1154.10.1038/nature07957Suche in Google Scholar PubMed
[79] I. Andrusenko, E. Mugnaioli, T. E. Gorelik, D. Koll, M. Panthöfer, W. Tremel, U. Kolb, Structure analysis of titanate nanorods by automated electron diffraction tomography. Acta Crystallogr. B2011, 67, 218.10.1107/S0108768111014534Suche in Google Scholar PubMed
[80] E. Mugnaioli, I. Andrusenko, T. Schüler, N. Loges, R. E. Dinnebier, M. Panthöfer, W. Tremel, U. Kolb, Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem. Int. Ed.2012, 51, 7041.Suche in Google Scholar
[81] M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, Automated determination of the extinction symbol via electron diffraction data, J. Appl. Crystallogr.2012, 45, 351.Suche in Google Scholar
[82] A. J. C. Wilson, The probability distribution of X-ray intensities. Acta Crystallogr.1949, 2, 318.Suche in Google Scholar
[83] M. Tanaka, M. Terauchi, Convergent beam electron diffraction, JEOL, Tokyo, 1985.Suche in Google Scholar
[84] G. McMullan, S. Chen, R. Henderson, A. R. Faruqi, Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy2009, 109, 1126.10.1016/j.ultramic.2009.04.002Suche in Google Scholar PubMed PubMed Central
[85] R. S. Ruskin, Z. Yu, N. Grigorieff, Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol.2013, 184, 385.Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study
- Temperature and humidity dependent investigations on paulingite
- Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO2 adsorption
- Influences of extraframework cations on features of natrolite group zeolites: the crystal structure of partly dehydrated K-containing paranatrolite
- Crystal structure analyses of two TMA silicates with ordered defects: RUB-20, a layered zeolite precursor, and RUB-22, a microporous framework silicate
- Carbon dioxide uptake in nitrite-sodalite: reaction kinetics and template ordering of the carbonate-nosean formation
- Structure characterization of nanocrystalline porous materials by tomographic electron diffraction
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study
- Temperature and humidity dependent investigations on paulingite
- Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO2 adsorption
- Influences of extraframework cations on features of natrolite group zeolites: the crystal structure of partly dehydrated K-containing paranatrolite
- Crystal structure analyses of two TMA silicates with ordered defects: RUB-20, a layered zeolite precursor, and RUB-22, a microporous framework silicate
- Carbon dioxide uptake in nitrite-sodalite: reaction kinetics and template ordering of the carbonate-nosean formation
- Structure characterization of nanocrystalline porous materials by tomographic electron diffraction