Abstract
We report on the phase transformation and the reaction kinetics of aluminosilicate nitrite-sodalite |Na8(NO2)2|[AlSiO4]6 crystallizing in space group
Acknowledgments
We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the Heisenberg program (GE1981/3-1 and GE1981/3-2). Additionally, we thank Dr. Claudia Weidenthaler (MPI für Kohlenforschung, Mühlheim an der Ruhr, Germany) for measurements regarding the feasibility of this study.
References
[1] F. M. Jaeger, On the constitution and the structure of ultramarine, Trans. Faraday Soc.1929, 25, 320.Search in Google Scholar
[2] L. Pauling, XXII. The structure of sodalite and helvite, Z. Kristallogr.1930, 74, 213.Search in Google Scholar
[3] R. X. Fischer, W. H. Baur, “Zeolite-Type Crystal Structures and their Chemistry. Framework Type Codes RON to STI. Subvolume E in Landolt-Börnstein, Numerical data and functional relationships in science and technology, New Series, Group IV: Physical Chemistry,” Volume 14, Microporous and other Framework Materials with Zeolite-Type Structures, (Eds. R. X. Fischer and W. H. Baur) Springer-Verlag, Berlin, Heidelberg, 2009.10.1007/978-3-540-70884-1Search in Google Scholar
[4] T. B. Reed, D. W. Breck, Crystalline zeolites. II. Crystal structure of synthetic zeolite, Type A, J. Am. Chem. Soc.1956, 78, 5972.Search in Google Scholar
[5] D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed, T. L. Thomas, Crystalline zeolites. I. The properties of a new synthetic zeolite, type A, J. Am. Chem. Soc.1956, 78, 5963.Search in Google Scholar
[6] V. Gramlich, W. M. Meier, The crystal structure of hydrated NaA: a detailed refinement of a pseudosymmetric zeolite structure, Z. Kristallogr.1971, 133, 134.Search in Google Scholar
[7] C. Baerlocher, L. B. McCusker, D. H. Olson, Atlas of Zeolite Framework Types, Elsevier, 2007.Search in Google Scholar
[8] R. X. Fischer, W. H. Baur, Symmetry relationships of sodalite (SOD) – type crystal structures, Z. Kristallogr.2009, 224, 185.Search in Google Scholar
[9] J.-C. Buhl, Hydrothermal synthesis and characterization of nitrite sodalite single crystals, J. Cryst. Growth.1991, 108, 143.Search in Google Scholar
[10] P. Sieger, M. Wiebcke, J. Felsche, J. C. Buhl, Orientational disorder of the nitrite anion in the sodalite Na8[AlSiO4]6(NO2)2, Acta Crystallogr.1991, C47, 498.Search in Google Scholar
[11] M. T. Weller, G. Wong, C. L. Adamson, S. M. Dodd, J. J. B. Roe, Intracage reactions in sodalites, J. Chem. Soc. Dalt. Trans.1990, 593.10.1039/dt9900000593Search in Google Scholar
[12] T. M. Gesing, J.-C. Buhl, Crystal structure of a carbonate-nosean Na8[AlSiO4]6CO3, Eur. J. Mineral.1998, 10, 71.Search in Google Scholar
[13] I. Hassan, H. D. Grundy, The structure of nosean, ideally Na8[Al6Si6O24]SO4·H2O, Can. Mineral.1989, 27, 165.Search in Google Scholar
[14] W. Depmeier, Tetragonal tetrahedra distortions in cubic sodalite frameworks, Acta Crystallogr.1984, B40, 185.Search in Google Scholar
[15] A. Khawam, D. R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals, J. Phys. Chem. B. 2006, 110, 17315.Search in Google Scholar
[16] J.-C. Buhl, Basic nitrite sodalite – Na8[AlSiO4]6(OH·H2O)(NO2) – A suitable material for the uptake of carbon dioxide, J. Solid State Chem.1991, 94, 19.Search in Google Scholar
[17] L. Robben, T. M. Gesing, Evaluation of temperature-dependent X-ray diffraction data using the autocorrelation function, Z. Kristallogr. Suppl.2014, 34, 67.Search in Google Scholar
[18] M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys.1939, 7, 1103.Search in Google Scholar
[19] M. Avrami, Kinetics of phase change. II transformation-time relations for random distribution of nuclei, J. Chem. Phys.1940, 8, 212.Search in Google Scholar
[20] M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III, J. Chem. Phys.1941, 9, 177.Search in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2014-1815) offers supplementary material, available to authorized users.
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study
- Temperature and humidity dependent investigations on paulingite
- Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO2 adsorption
- Influences of extraframework cations on features of natrolite group zeolites: the crystal structure of partly dehydrated K-containing paranatrolite
- Crystal structure analyses of two TMA silicates with ordered defects: RUB-20, a layered zeolite precursor, and RUB-22, a microporous framework silicate
- Carbon dioxide uptake in nitrite-sodalite: reaction kinetics and template ordering of the carbonate-nosean formation
- Structure characterization of nanocrystalline porous materials by tomographic electron diffraction
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Preface
- Special Issue: Zeolites
- Original Articles
- High-pressure behavior of synthetic mordenite-Na: an in situ single-crystal synchrotron X-ray diffraction study
- Temperature and humidity dependent investigations on paulingite
- Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO2 adsorption
- Influences of extraframework cations on features of natrolite group zeolites: the crystal structure of partly dehydrated K-containing paranatrolite
- Crystal structure analyses of two TMA silicates with ordered defects: RUB-20, a layered zeolite precursor, and RUB-22, a microporous framework silicate
- Carbon dioxide uptake in nitrite-sodalite: reaction kinetics and template ordering of the carbonate-nosean formation
- Structure characterization of nanocrystalline porous materials by tomographic electron diffraction