Abstract
Lithium tungsten bronzes with a nominal composition of Li0.4WO3 were synthesized by solid state reactions in silica tubes at 973 K and various low pressures. Samples were characterized using X-ray single crystal and powder diffraction, and neutron powder diffraction. The air pressure inside the sealed quartz tubes played roles for the formation of Li0.4WO3 phases with different symmetries. Whereas using a pressure of 10–7 MPa a pure body centered cubic (Im
Acknowledgments
We thank Prof. R. X. Fischer (Crystallography, University Bremen) for his critical help on the group-subgroup relations. Thanks to BENSC at HZB for allocation of beam time and facilities. We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for the support in the Heisenberg program (GE1981/3-1 and GE1981/3-2). M. S. R. likes to thank the University Bremen for a PhD stipendium.
References
[1] P. G. Dickens, M. S. Whittingham, Q. Rev. Chem. Soc. 1968,22, 30.Suche in Google Scholar
[2] A. R. Sweedler, C. J. Raub, B. T. Matthias, Phys. Lett. 1965, 15, 108.Suche in Google Scholar
[3] L. Bartha, A. B. Kiss, Int. J. Refractory Metals & Hard Materials1995, 13, 77.10.1016/0263-4368(94)00031-XSuche in Google Scholar
[4] F. Wöhler, Ann. Chim. Phys. 1823, 43, 29.Suche in Google Scholar
[5] A. Magnéli, B. Blomberg, Acta Chem. Scand.1951, 5, 372.Suche in Google Scholar
[6] J. Guo, C. Dong, L. Yang, G. Fu, H. Chen, Mater. Res. Bull. 2007, 42, 1384.Suche in Google Scholar
[7] R. J. D. Tilley, Int. J. Refractory Metals & Hard Materials1995, 13, 93.10.1016/0263-4368(95)00004-6Suche in Google Scholar
[8] M. E. Straumanis, S. S. Hsu, J. Am. Chem. Soc. 1950, 72, 4027.Suche in Google Scholar
[9] M. E. Straumanis, G. F. Doctor, J. Am. Chem. Soc. 1951, 73, 3492.Suche in Google Scholar
[10] L. E. Conroy, M. J. Sienko, J. Am. Chem. Soc. 1952, 74, 3520.Suche in Google Scholar
[11] P. J. Wiseman, P. G. Dickens, J. Solid State Chem. 1976, 17, 91.Suche in Google Scholar
[12] H. Inaba, K. Naito, J. Solid State Chem. 1976, 18, 279.Suche in Google Scholar
[13] K. H. Cheng, M. S. Whittingham, Solid State Ionics1980, 1, 151.10.1016/0167-2738(80)90030-2Suche in Google Scholar
[14] P. G. Dickens, S. A. Kay, Solid State Ionics1983, 8, 291.10.1016/0167-2738(83)90003-6Suche in Google Scholar
[15] R. J. Cava, A. Santoro, D. W. Murphy, S. M. Zahurak, R. S. Roth, J. Solid State Chem. 1983, 50, 121.Suche in Google Scholar
[16] K. R. Dey, C. H. Rüscher, Th. M. Gesing, A. Hussain, Mat. Res. Bull. 2007, 42, 591.Suche in Google Scholar
[17] M. J. Sienko, T. B. N. Troung, J. Am. Chem. Soc. 1961, 83, 3939.Suche in Google Scholar
[18] M. Green, Z. Hussain, J. Appl. Phys. 1993, 74, 3451.Suche in Google Scholar
[19] C. G. Granqvist, Sol. Energy Mater. & Sol. Cells2000, 60, 201.10.1016/S0927-0248(99)00088-4Suche in Google Scholar
[20] M. Green, Ionics1999, 5, 161.Suche in Google Scholar
[21] M. H. Kim, T. Y. Kang, Y. S. Jung, K. H. Kim, JAPAN. J. Appl. Phys. 2013, 52, 05EC03.Suche in Google Scholar
[22] Y. Djaoued, S. Balaji, R. Brüning, J. Nanomater. 2012, DOI: 10.1155/2012/674168. Available at: http://www.hindawi.com/journals/jnm/2012/674168/.10.1155/2012/674168Suche in Google Scholar
[23] Q. Zhong, J. R. Dahn, K. Colbow, Phys. Rev.1992, B46, 2554.Suche in Google Scholar
[24] G. M. Sheldrick, Shelxs-86, Program for Crystal Structure Determination, University of Göttingen, Germany, 1986.Suche in Google Scholar
[25] G. M. Sheldrick, Shelxl-93, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1993.Suche in Google Scholar
[26] A. C. Larson, R. B. Von. Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR (2004) 86.Suche in Google Scholar
[27] M. A. Wechter, H. R. Shanks, A. F. Voigt, Inorg. Chem. 1968, 7, 845.Suche in Google Scholar
[28] C. H. Rüscher, K. R. Dey, T. Debnath, I. Horn, A. Hussain, R. Glaum, J. Solid State Chem. 2008, 181, 90.Suche in Google Scholar
[29] W. H. Jones Jr., E. A.Garbaty, R. G.Barnes, J. Chem. Phys. 1962, 36, 494.Suche in Google Scholar
[30] E. Banks, A. Goldstein, Inorg. Chem. 1968, 5, 966.Suche in Google Scholar
[31] R. D. Shannon, Acta Crystallogr. 1976, A32, 751.Suche in Google Scholar
[32] A. J. Mark, I. D. Raistrick, R. A. Huggins, J. Electrochem. Soc. 1983, 130, 776.Suche in Google Scholar
[33] P. S. Halasyamani, K.R. Poeppelmeier, Chem. Mater.1998, 10, 2753.Suche in Google Scholar
[34] A. D. Walkingshaw, N. A. Spaldin, E. Artacho, Phys. Rev.2004, B70, 165110.Suche in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2014-1777) offers supplementary material, available to authorized users.
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The new disordered triplite polymorph of Co2[PO4]F
- The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures
- Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze
- Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms
- A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure
- Cu6Te3S – a Cu-filled Cr3Si-structure variant
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The new disordered triplite polymorph of Co2[PO4]F
- The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures
- Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze
- Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms
- A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure
- Cu6Te3S – a Cu-filled Cr3Si-structure variant