Abstract
Ferdowsiite is monoclinic, a=8.677(2) Å, b=5.799(1) Å, c=13.839(3) Å, β=96.175(4)°, unit cell volume 692.3 Å3. Space group P21/n. Refinement from single-crystal X-ray diffraction data reached R1=0.028 for 626 Fo>4σ(Fo) and 0.032 for all 716 Fo used. Value of wR2 is 0.065. The crystal structure of ferdowsiite, approximately Ag8Sb4(As,Sb)4S16, contains four distinct cation and four different anion sites in the asymmetric unit, all in general positions. Besides two Ag sites and one Sb site, the crystal structure contains one mixed As-Sb coordination polyhedron (0.63 As and 0.37 Sb in the site). The Sb1 site has three short Sb-S bonds 2.503–2.645 Å. As and Sb in the mixed site were refined separately, with isotropic displacement coefficients. As has typical bond length values of 2.248–2.354 Å whereas Sb has 2.443–2.392 Å, i.e., the observed ligand positions are visibly influenced by the predominant arsenic. The crystal structure of ferdowsiite is a superstructure of a PbS like motif. The {100} planes of the PbS-like substructure are the (105̅), (301) and (010) planes in terms of the ferdowsiite lattice. The structure contains zig-zag chains of Sb1 connected via short Sb-S bonds and flanked by (Sb,As)S3 groups and Ag polyhedra. Groups of four SbS5-and (Sb,As)S5 coordination pyramids form an interconnected network with interspaces which accommodate both the lone electron pairs and the tetrahedrally coordinated Ag situated in coordination octahedra. Partial lead substitution takes place in the coordination polyhedra of Sb1 and Ag2. In the paper, the structure is compared with the other Ag(As,Sb,Bi)(S,Se)2 structures. The configurationally closest PbS-based homeotypic structure, however, is diaphorite, which is an ordered superstructure of the ferdowsiite arrangement, with a substantial presence of Pb, and without As.
Acknowledgments
This research was financially supported by the grant 09-065749/FNU of the National Research Council for Nature and Universe (Denmark). We thank Dr. Tajeddin (Tehran) for the ferdowsiite sample used in this study.
References
[1] T. K. Bera, J.-I. Jang, S. J. Wan, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, M. G. Kanatzidis, J. Amer. Chem. Soc.2010, 132, 3484.Suche in Google Scholar
[2] A. Kyono, M. Kimata, Amer. Mineral. 2005, 90, 162.Suche in Google Scholar
[3] T. Matsumoto, W. Nowacki, Z. Kristallogr. 1969, 129, 163.Suche in Google Scholar
[4] E. Hellner, H. Burzlaff, Naturwissenschaften1964, 51, 53.10.1007/BF00622577Suche in Google Scholar
[5] J. V. Smith, J. J. Pluth, S.-X. Han, Mineral. Magazine1997, 61, 671.10.1180/minmag.1997.061.408.05Suche in Google Scholar
[6] K. Walenta, Lapis1998, 23, 21.Suche in Google Scholar
[7] S. Geller, J. H. Wernick, Acta Crystallogr. 1959, 12, 46.Suche in Google Scholar
[8] K. Walenta, H.-J. Bernhardt, T. Theye, N. Jb. Miner. Mh.2004, 425.10.1127/0028-3649/2004/2004-0425Suche in Google Scholar
[9] Y. Moëlo, E. Makovicky, N. N. Mozgova, J. L. Jambor, N. Cook, A. Pring, W. Paar, E. H. Nickel, S. Graeser, S. Karup-Møller, T. Balić-Žunić, W. G. Mumme, F. Vurro, D. Topa, L. Bindi, K. Bente, M. Shimizu, Eur. J. Mineral.2008, 20, 7.Suche in Google Scholar
[10] D. J. E. Mullen, W. Nowacki, Z. Kristallogr. 1974, 139, 54.Suche in Google Scholar
[11] H. Effenberger, W. H. Paar, D. Topa, A. J. Criddle, M. Fleck, Amer. Mineral.2002, 87, 753.Suche in Google Scholar
[12] E. Makovicky, D. Topa, D. Tajeddin, H. Putz, G. Zagler, Can. Mineral. 2013, 51, 727.Suche in Google Scholar
[13] Bruker AXS, SMART, Version 5.0, Bruker AXS, Inc., Madison, WI 53719, USA, 1998a.Suche in Google Scholar
[14] Bruker AXS, SAINT, Version 5.0, Bruker AXS, Inc., Madison,WI 53719, USA, 1998b.Suche in Google Scholar
[15] Bruker AXS, XPREP, Version 5.1, Bruker AXS, Inc., Madison,WI 53719,USA, 1997.Suche in Google Scholar
[16] G. M. Sheldrick, Acta Crystallogr.2008, A64, 112.Suche in Google Scholar
[17] T. Armbruster, E. Makovicky, P. Berlepsch, J. Sejkora, Eur. J. Mineral.2003, 15, 137.Suche in Google Scholar
[18] T. Ito, W. Nowacki, Z. Kristallogr.1974, 139, 85.Suche in Google Scholar
[19] S. Graeser, P. Berlepsch, E. Makovicky, T. Balić-Žunić, Amer. Mineral. 2001, 86, 1087.Suche in Google Scholar
Supplemental Material
The online version of this article (DOI: 10.1515/zkri-2014-1771) offers supplementary material, available to authorized users.
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The new disordered triplite polymorph of Co2[PO4]F
- The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures
- Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze
- Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms
- A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure
- Cu6Te3S – a Cu-filled Cr3Si-structure variant
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The new disordered triplite polymorph of Co2[PO4]F
- The crystal structure of ferdowsiite Ag8Sb4(As,Sb)4S16 and its relations to other ABX2 (A=Ag; B=As,Sb,Bi; X=S,Se) structures
- Synthesis, characterization and time dependent phase transformation of Li0.4WO3 bronze
- Metastable metal imidazolates: development of targeted syntheses by combining experimental and theoretical investigations of the formation mechanisms
- A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: hydrothermal synthesis and structure
- Cu6Te3S – a Cu-filled Cr3Si-structure variant