Abstract
Metamict titanite from the Cardiff uranium mine (M28696) in Ontario, Canada, has been analyzed using 29Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). A broad Gaussian shaped NMR signal at –81 ppm occurs at room temperature resulting from the mainly locally ordered metamict structural state. NMR signals were obtained at room temperature and after annealing at 600, 950, 1220 and 1470 K. Because of increasing crystallinity the full width at half maximum (FWHM) decreased from 24 ppm to 20 ppm, respectively using a pseudo-Voigt fit. For comparison highly-crystalline titanite from Rauris showed an NMR signal at –79.3 ppm with FWHM of 4.1 ppm and an almost Lorentzian profile because of its good long range order. Integrating synchrotron X-ray diffraction (XRD) signals of Cardiff titanite show an increase of the crystallographic long range order at annealing temperatures considerably lower than the local ordering seen by NMR.
Acknowledgments
We thank Dr. Michael Fechtelkord for the NMR measurements. Financial support by the Deutsche Forschungsgemeinschaft (DFG via SPP 1415) and BMBF is gratefully acknowledged.
References
[1] G. R. Lumpkin, R. C. Ewing, Alpha-decay damage in minerals of the Pyrochlore group. Phys. Chem. Miner.1988, 16, 2.Suche in Google Scholar
[2] R. C. Ewing, B. C. Chakoumakos, G. R. Lumpkin, T. Murakami, R. B. Greegor, F. W. Lytle, Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear waste forms. Nucl. Instrum. Methods Phys. Res. B1988, 32, 487.10.1016/0168-583X(88)90259-5Suche in Google Scholar
[3] M. Muthuraman, N. Arul Dhas, K. C. Patil, Combustion synthesis of oxide materials for nuclear waste immobilization. B. Mater. Sci.1994, 17, 977.Suche in Google Scholar
[4] J. B. Higgins, P. H. Ribbe, The crystal chemistry and space groups of natural and synthetic titanites. Am. Mineral.1976, 61, 878.Suche in Google Scholar
[5] J. A. Speer, G. V.Gibbs, The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. Am. Mineral.1976,61, 238.Suche in Google Scholar
[6] S. Kek, M. Aroyo, U. Bismayer, C. Schmidt, K. Eichhorn, H. G. Krane, The two-step phase transition of titanite, CaTiSiO5: a synchrotron radiation study. Zeitschrift für Kristallographie1997, 212, 9.10.1524/zkri.1997.212.1.9Suche in Google Scholar
[7] F. C. Hawthorne, L. A.Groat, M. Raudsepp, N. A. Ball, M. Kimata, F. D. Spike, R. Gaba, N. M. Halden, G. R. Lumpkin, R. C. Ewing, R. B. Greegor, F. W. Lytle, T. S. Ercit, G. R. Rossman, F. J. Wicks, R. A. Ramik, B. L. Sherriff, M. E. Fleet, C. McCammon, Alpha-decay damage in titanite. Am. Mineral.1991, 76, 370.Suche in Google Scholar
[8] E. R. Vance, and J. B. Metson, Radiation damage in natural titanites. Phys. Chem. Miner.1985, 12, 255.Suche in Google Scholar
[9] C. Paulmann, U. Bismayer, L. A. Groat, Thermal annealing of metamict titanite: a synchrotron radiation and optical birefringence study. Zeitschrift für Kristallographie2000, 215, 678.10.1524/zkri.2000.215.11.678Suche in Google Scholar
[10] T. Beirau, B. Mihailova, G. Matveeva, U. Kolb, T. Malcherek, L. Groat, U. Bismayer, Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite. Am. Mineral.2012, 97, 1354.Suche in Google Scholar
[11] E. K. H. Salje, D. J. Safarik, R. D. Taylor, M. P. Pasternak, K. A. Modic, L. A. Groat, J. C. Lashley, Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5). J. Phys. Condens. Mat.2011, 23,105402 (3 p).10.1088/0953-8984/23/10/105402Suche in Google Scholar PubMed
[12] M. L. Balmer, B. C. Bunker, L. Q. Wang, C. H. F. Peden, Y. Su, Solid-state Si-29 MAS NMR study of titanosilicates. J. Phys. Chem. B1997, 101, 9170.10.1021/jp971429oSuche in Google Scholar
[13] J. S. Hartman, R. L. Millard, E. R. Vance, A 29Si magic angle spinning NMR and DTA study of thermal crystallization of sphene and zircon gels. J. Mater. Sci.1990, 25, 2785.Suche in Google Scholar
[14] E. K. H. Salje, R. D. Taylor, D. J. Safarik, J. C. Lashley, L. A. Groat, U. Bismayer, R. J. Evans, R. Friedman, Evidence for direct impact damage in metamict titanite CaTiSiO5. J. Phys. Condens. Mat.2012, 24, 052202 (5 p).10.1088/0953-8984/24/5/052202Suche in Google Scholar PubMed
[15] H. W. Meyer, M. Zhang, U. Bismayer, E. K. H. Salje, C. Schmidt, S. Kek, W. Morgenroth, T. Bleser, Phase transformation of natural titanite: an infrared, Raman spectroscopic, optical birefringence, and X-ray diffraction study. Phase Transit.1996, 59, 39.Suche in Google Scholar
[16] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem.2002, 40, 70.Suche in Google Scholar
[17] J. F. Stebbins, Nuclear magnetic resonance spectroscopy of silicates and oxides in geochemistry and geophysics. In Handbook of Physical Constants, (Eds. T. J. Ahrens) American Geophysical Union, Washington DC, p. 303, 1995.10.1029/RF002p0303Suche in Google Scholar
[18] B. L., Sherriff, H. D. Grundy, J. S. Hartman, The relationship between Si-29 MAS NMR chemical-shift and silicate mineral structure. Eur. J. Mineral.1991, 3, 751.Suche in Google Scholar
[19] G. E. Pake, E. M. Purcell, Line shapes in nuclear paramagnetism. Phys. Rev.1948, 74, 1184.Suche in Google Scholar
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Review Article
- Partially amorphous (metamict) titanite: a silicate mineral in a natural radiation induced non-equilibrium phase
- Inorganic Crystal Structures
- 29Si MAS NMR spectroscopy and synchrotron XRD study of metamict Cardiff titanite
- Organic and Metalorganic Crystal Structures
- Preparation and X-ray structures of selected aminium thiosulfates
- One- and two-dimensional heteropolynuclear complexes with tetracyanonickelate(II) and 2-pyridinemethanol
- Synthesis and characterization of cyclo-tetrakis(μ-oxo-dimethylaminoethanolato-κN:κO)tetrakis(iodozinc) toluene solvate and Bis(dimethylaminoethanol)cadmium(II)iodide
- Low-dimensional compounds containing cyanido groups. XXVII. Two forms of nitrosodicyanomethanide in Fe(II) complexes
- Crystal structures of (E)-2-(2-benzylidenehydrazinyl)quinoxalines: persistent N–H···N intermolecular hydrogen bonds but variable π···π interactions
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Review Article
- Partially amorphous (metamict) titanite: a silicate mineral in a natural radiation induced non-equilibrium phase
- Inorganic Crystal Structures
- 29Si MAS NMR spectroscopy and synchrotron XRD study of metamict Cardiff titanite
- Organic and Metalorganic Crystal Structures
- Preparation and X-ray structures of selected aminium thiosulfates
- One- and two-dimensional heteropolynuclear complexes with tetracyanonickelate(II) and 2-pyridinemethanol
- Synthesis and characterization of cyclo-tetrakis(μ-oxo-dimethylaminoethanolato-κN:κO)tetrakis(iodozinc) toluene solvate and Bis(dimethylaminoethanol)cadmium(II)iodide
- Low-dimensional compounds containing cyanido groups. XXVII. Two forms of nitrosodicyanomethanide in Fe(II) complexes
- Crystal structures of (E)-2-(2-benzylidenehydrazinyl)quinoxalines: persistent N–H···N intermolecular hydrogen bonds but variable π···π interactions